Die Dampfmaschine von James Watt - physikalische Prinzipien, technische Umsetzungen, gesellschaftliche Auswirkungen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Magister der Naturwissenschaften

im Diplomstudium

Lehramt Physik und Mathematik

Eingereicht von:
Philipp Lechner

Angefertigt am:
Institut für Theoretische Physik

Beurteilung:
Ass.-Prof. in Dr. in Helga Böhm

Mitwirkung:
Dr. Thomas Spielbüchner

Linz, Juni 2015
Eidestattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbstständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.
Die vorliegende Diplomarbeit ist mit dem elektronisch übermittelten Textdokument identisch.

Linz, Juni 2015

Lechner Philipp

Anmerkung: Aufgrund einer besseren Lesbarkeit und Verständlichkeit wird in dieser Arbeit auf eine durchgängige geschlechtsneutrale Formulierung verzichtet. Sofern personenbezogene Angaben nur in männlicher Form angegeben sind, bezieht sich die gewählte Diktion auf Männer und Frauen in gleicher Weise.
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Einleitung</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Danksagung</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Physikalische Theorie thermodynamischer Prozesse</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>Historische Vorbemerkungen und Bestimmung von Begriffen</td>
<td>7</td>
</tr>
<tr>
<td>3.2</td>
<td>Die Physik der Thermodynamik</td>
<td>10</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Der Unterschied zwischen Wärme und Temperatur</td>
<td>10</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Der Begriff des Systems</td>
<td>11</td>
</tr>
<tr>
<td>3.3</td>
<td>Das ideale Gasgesetz</td>
<td>14</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Zustandsgrößen, Zustandsgleichung</td>
<td>15</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Thermodynamische Prozesse</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>Sätze der Thermodynamik</td>
<td>19</td>
</tr>
<tr>
<td>4.1</td>
<td>Der Nullte Hauptsatz der Thermodynamik</td>
<td>19</td>
</tr>
<tr>
<td>4.2</td>
<td>Der Erste Hauptsatz der Thermodynamik</td>
<td>22</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Wärme</td>
<td>22</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Arbeit</td>
<td>23</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Volumenänderungsarbeit</td>
<td>24</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Die Formulierung des Ersten Hauptsatzes</td>
<td>28</td>
</tr>
<tr>
<td>4.3</td>
<td>Folgerungen</td>
<td>30</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Energiebilanzgleichungen</td>
<td>31</td>
</tr>
<tr>
<td>4.4</td>
<td>Der Zweite Hauptsatz der Thermodynamik</td>
<td>33</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Der Begriff Entropie</td>
<td>34</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Kreisprozesse und Irreversibilität</td>
<td>35</td>
</tr>
<tr>
<td>4.5</td>
<td>Das Nassdampfgebiet</td>
<td>36</td>
</tr>
<tr>
<td>4.6</td>
<td>Der Wirkungsgrad</td>
<td>40</td>
</tr>
</tbody>
</table>
5 Die Entwicklung der Wattschen Dampfmaschine

<table>
<thead>
<tr>
<th>5.1</th>
<th>Edward Somerset</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Jean Hautefeuille</td>
<td>45</td>
</tr>
<tr>
<td>5.3</td>
<td>Huygens’ Idee</td>
<td>45</td>
</tr>
<tr>
<td>5.4</td>
<td>Thomas Savery</td>
<td>47</td>
</tr>
<tr>
<td>5.5</td>
<td>Überlegungen von Denis Papin</td>
<td>51</td>
</tr>
<tr>
<td>5.6</td>
<td>Die Atmosphärische Dampfmaschine nach Thomas Newcomen</td>
<td>53</td>
</tr>
<tr>
<td>5.7</td>
<td>Die verbesserte Dampfmaschine von James Watt</td>
<td>61</td>
</tr>
</tbody>
</table>

6 Auswirkungen auf die Gesellschaft - Die Industrielle Revolution

<table>
<thead>
<tr>
<th>6.1</th>
<th>Der Begriff der Industriellen Revolution</th>
<th>77</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Voraussetzungen der Industriellen Revolution</td>
<td>79</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Die Agrarrevolution</td>
<td>79</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Die Rolle des Kapitals</td>
<td>82</td>
</tr>
<tr>
<td>6.3</td>
<td>Die Rolle der Technik in der Industriellen Revolution</td>
<td>83</td>
</tr>
<tr>
<td>6.4</td>
<td>Gesellschaftliche Auswirkungen der Industriellen Revolution</td>
<td>90</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Wandel in der gesellschaftlichen Struktur</td>
<td>90</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Migration</td>
<td>91</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Wohn- und Arbeitsverhältnisse</td>
<td>93</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Gründung der ersten Gewerkschaften</td>
<td>95</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Die Wissenschaft ändert sich</td>
<td>97</td>
</tr>
<tr>
<td>6.4.6</td>
<td>Industrialisierung in anderen Ländern</td>
<td>99</td>
</tr>
</tbody>
</table>

7 Bezug zum Unterricht

<table>
<thead>
<tr>
<th>7.1</th>
<th>Sekundarstufe I</th>
<th>105</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>Sekundarstufe II</td>
<td>105</td>
</tr>
</tbody>
</table>

8 Zusammenfassung

| 8 | | 107 |

9 Abbildungsverzeichnis

| 9 | | 109 |
10 Quellenverzeichnis

10.1 Literatur .. 110
10.2 Internetquellen .. 112
1 Einleitung

Die vorliegende Arbeit soll zum einen den Irrtum beseitigen, James Watt habe die Dampfmaschine erfunden und damit die Industrielle Revolution eingeläutet und zum anderen den Weg verdeutlichen, den die Dampfmaschine gehen musste, ehe sie von James Watt verbessert wurde und maßgeblich die Industrialisierung beeinflusste.

Anhand der Dampfmaschine lässt sich auch zeigen, welchen Einfluss technologischer Fortschritt auf die gesellschaftlichen Beziehungen der Menschen haben kann. Die Sensibilisierung auf globale Auswirkungen lokaler Entwicklungen liegt mir am Herzen, besonders da mir während des Studiums immer klarer wurde, dass führende Wirtschaftsmächte einen enormen Einfluss auf andere, meist weniger entwickelte, Gebiete der Welt haben.

Durch die Beschäftigung mit der Rolle der Technologie im Laufe der Geschichte – auch in anderen Teilgebieten der Physik, wie etwa der Atomphysik, Quantenphysik oder der Elektrizitätslehre – kann man als Lehrperson Kompetenzen erwerben, die den Schülern zeigen, welche Bedeutung die Physik als Grundlage der Technik in unserer Gesellschaft gespielt hat und immer noch spielt.

Meiner Meinung nach bietet dieses Wissen die Möglichkeit, Schüler über die Grenzen der fachlichen Themen hinaus unterrichten zu können und sie in unterschiedlicher Weise an Themen heranzuführen.
2 Danksagung

Bedanken möchte ich mich in erster Linie bei meinen Eltern, die mir die Möglichkeiten eröffneten ein universitäres Studium zu ergreifen, bei Dr. Helga Böhm und Dr. Thomas Spielbüchler für die Betreuung dieser Arbeit, und bei meiner Lebensgefährtin, die mich während des Studiums unterstütze und mir die nötige Motivation gab, mein Studium voranzutreiben.
3 Physikalische Theorie thermodynamischer Prozesse

Dieses Kapitel dient zur Vorbereitung für die Beschreibung der physikalischen Vorgänge, die gebraucht werden, um die Dampfmaschinen von Denis Papin, Thomas Newcomen und James Watt nutzbar zu machen. Hier findet man Definitionen von relevanten Begriffen, wie etwa von Systemen, Wärme, Temperatur, Zustandsgrößen und Zustandsgleichungen.

3.1 Historische Vorbemerkungen und Bestimmung von Begriffen

Abbildung 1: Heronsball, Hart S.92

Eine andere Erfindung, die auf den Gesetzen der Thermodynamik basiert und primär auch keinen technischen Nutzen zeigte, sondern religiös motiviert war, war die Entwicklung eines feuergetriebenen Toröffnungssystem von Tempeltüren (siehe Abbildung 2).

Abbildung 2: Mechanismus zur Öffnung von Tempeltüren durch Dampfkraft, Breidbach S.269

Das Feuer erwärmt die Luft über dem Druckbehälter, wodurch das darin befindliche Wasser
über den Heber in den Wasserbehälter fließt. Die Aufhängung des Wasserbehälters treibt durch das Senken aufgrund der Gewichtszunahme über eine Kette zwei Getriebe an, die für das Öffnen der Torflügel verantwortlich sind. Erlischt das Feuer, kühlt auch die Luft im Druckbehälter ab, wodurch das Wasser wieder aus dem Wasserbehälter zurückfließt und sich die Tempeltore schließen.

Primär wurde das automatische Öffnungssystem verwendet, um die gläubigen Pilger, die einen Tempel besuchen wollten, ins Staunen zu versetzen und so die Erhabenheit göttlicher Macht zu demonstrieren, denn den Menschen war es fremd, dass sich massive und schwere Tore ohne menschliche oder tierische Anstrengung öffnen lassen (vgl. Breidbach S.269).

James Watt, dem man eigentlich die Erfindung der Dampfmaschine zuschreibt, griff auf die Konstruktion von Newcomen zurück und konnte den Wirkungsgrad erhöhen, was natürlich bedeutet, dass die Wärmekraftmaschinen effizienter genutzt werden konnten (vgl. Stierstadt S.219).

Auf die historische Entwicklung der Thermodynamik wird in dieser Arbeit allerdings nicht eingegangen, obwohl auch sie sehr interessant und von vielen unterschiedlichen Zugängen geprägt ist. Der gebotene Rahmen ist jedoch zu klein für eine umfassende Behandlung.

Um auf die Theorie thermodynamischer Kreisprozesse näher eingehen zu können, werden im
folgenden Abschnitt elementare Prinzipien der verwendeten Teilbereiche der Thermodynamik erarbeitet.

3.2 Die Physik der Thermodynamik

3.2.1 Der Unterschied zwischen Wärme und Temperatur

- Die tiefste zu erreichende Temperatur einer flüssigen Mischung aus Seesalz mit Wasser wurde als $0^\circ F$ definiert.
- Ein weiterer Referenzpunkt war der Gefrierpunkt reines Wassers bei $32^\circ F$.
- Die Körpertemperatur des Menschen wurde mit $96^\circ F$ festgelegt.

Später wurde die Skaleneinteilung durch den Siedepunkt von Wasser mit $212^\circ F$ definiert, was die Körpertemperatur auf eine Temperatur von $98,6^\circ F$ erhöhte. Erwähnt sei, dass diese adjudierte Skala heute noch in jenen Ländern verwendet wird, die mit der Fahrenheitskala arbeiten (vgl. Müller S.4).

3.2.2 Der Begriff des Systems

Daher sind die thermodynamischen Gesetze extrem allgemein, man spricht auch von „universell“ gültig.

Sehr häufig ist man zusätzlich nur an einem Teil dieser Eigenschaften interessiert. Für die in dieser Arbeit im Zentrum stehende Dampfmaschine ist es unwichtig, dass die Wassermoleküle ein Dipolmoment haben, und Wasser bzw. sein Dampf in einem elektrischen Feld polarisierbar ist. Man erforscht in der Praxis also eine bestimmte Substanz, beispielsweise Wasser in einem Gefäß, ein magnetisches Stück Eisen, ein hochelastisches Thera-Band im Sport, ein chemisches Gemisch, ein galvanisches Element in einer Batterie, etc. im Hinblick auf ganz bestimmte Eigenschaften. Das, was im jeweiligen Fall spezifisch untersucht wird, bezeichnet man in der Thermodynamik als das betrachtete „System“.

11

Grundsätzlich dürfen mehrere Systeme zu einem gesamten abgeschlossenen System zusammengefasst werden, woraus folgt, dass die Systemgrenzen beliebig gezogen werden dürfen. Um die Wechselwirkung zwischen Teilsystemen zu untersuchen, können Systeme auch in gedachte Einzelsysteme zerlegt werden (vgl. Baehr S.10).

Es sei noch angemerkt, dass in englischen Lehrbüchern eine einheitliche Bezeichnung der Systemklassen vorliegt, während in älteren deutschsprachigen der Begriff „geschlossen“ gebraucht wird, obwohl ein isoliertes System vorliegt.

Zusammenfassend zur Charakterisierung der Systeme kann folgende Tabelle angegeben werden:

<table>
<thead>
<tr>
<th>englische Bezeichnung</th>
<th>Bedeutung</th>
<th>deutsche Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>isolated</td>
<td>keinerlei Austausch von Wärme, Arbeit oder Materie mit der Umgebung</td>
<td>abgeschlossen</td>
</tr>
<tr>
<td>closed</td>
<td>Materie darf mit der Umgebung nicht ausgetauscht werden; Energie allerdings schon</td>
<td>geschlossen</td>
</tr>
<tr>
<td>open</td>
<td>Austausch von Energie und Materie mit der Umgebung möglich</td>
<td>offen</td>
</tr>
<tr>
<td>adiabatic</td>
<td>Materie darf ausgetauscht werden; Wärme allerdings nicht</td>
<td>adiabatisch</td>
</tr>
</tbody>
</table>

Auf Walter Schottky geht eine Definition thermodynamischer Systeme zurück, die beschreibt, dass thermodynamische Systeme mit der Umgebung nur durch Austausch von Wärme, mechanischer Arbeit, elektromagnetischer Arbeit und Masse wechselwirken. Diese Definition
verwendet nicht den Begriff der Temperatur, was eine Betrachtung von Nichtgleichgewichtser-scheinungen ermöglicht und in der Thermodynamik irreversibler Prozesse von großer Bedeutung ist (vgl. Päsler S.15).

Es wird hier die Konvention getroffen, dass Größen, die in ein System eindringen, positiv sind und Größen, die ein System verlassen, negativ sind.

3.3 Das ideale Gasgesetz

Um die Zustandsgleichung eines idealen Gases zu beschreiben, muss erst erörtert werden, worum es sich bei einem idealen Gas handelt. Um ein ideales Gas beschreiben zu können, werden folgende Vereinfachungen angenommen (vgl. Nolting S.140):

- Bei einem idealen Gas haben die einzelnen Gasmoleküle kein Eigenvolumen.
- Zwischen den Gasmolekülen treten keinerlei Wechselwirkungen auf.

Ist ein ideales Gas mit einer Anzahl von \(N \) Teilchen in einem Volumen \(V \) eingeschlossen und befindet sich dieses System in thermischem Kontakt mit einem Wärmebad einer bestimmten Temperatur, so nimmt das Gesamtsystem aus Gas und Wärmebad aufgrund des Nullten Hauptsatzes der Wärmelehre einen Gleichgewichtszustand an (vgl. Nolting S.141).

Ist das Gas hinreichend verdünnt, so dass in Näherung ein ideales Gas vorliegt, befolgt das Gas das 1662 formulierte *Boyle-Mariotte'sche Gesetz*:

\[
\frac{pV}{N} = K = \text{const.}
\]

1787 fand Jacques Charles, dass das Volumen \(V \) eines Gases proportional zur Temperatur ansteigt. Der nächste wichtige Zusammenhang, nämlich dass auch der Druck linear mit der

In heutiger Form lautet das ideale Gasgesetz:

$$pV = \begin{cases} \frac{Nk_BT}{n} & \text{... } k_B = 1,38 \cdot 10^{-23} J/K \text{ Boltzmann-Konstante} \\ \frac{nRT}{n} & \text{... } R = 8,3 J/molK \text{ Boltzmann-Konstante} \end{cases}$$

n gibt die Molzahl des Gases an und die ideale Gaskonstante R kann aus der Avogadrozahl $N_A = 6,022 \cdot 10^{23}mol^{-1}$ multipliziert mit der Boltzmannkonstante k_B berechnet werden.

3.3.1 Zustandsgrößen, Zustandsgleichung

Welche Größen bestimmt werden, hängt dabei jeweils von der konkreten Problemstellung ab. Die Zustandsgleichung eines idealen Paramagneten lautet beispielsweise:

$$\mathcal{M} = \frac{N}{V} \mu_B \tanh(\frac{\mu_B B}{k_B T}), \quad \text{wobei} \begin{cases} \mathcal{M} & \text{... Magnetisierung} \\ B & \text{... Magnetfeld} \\ \mu_B & \text{... Bohrsches Magneton} \end{cases}$$

N ist hier die Teilchenzahl und V ist das Volumen des Magneten.

Formal ausgedrückt, kann eine Eigenschaft Y eines Systems als Funktion f endlich vieler
Variablen $X_1, X_2, X_3, \ldots, X_n$ und einer Funktion ausgedrückt werden. Es gilt:

$$ Y = f(X_1, X_2, X_3, \ldots, X_n) \quad (2) $$

$x_1, x_2, x_3, \ldots, x_n$ sind hier unabhängige Variablen, die ein Koordinatensystem bilden und deren Auswahl nicht eindeutig ist (vgl. Stephan/Mayinger S.6).

Gleichung 2 stellt eine Zustandsgleichung beziehungsweise eine Zustandsfunktion dar, da sie den Zusammenhang physikalischer Eigenschaften beschreibt (vgl. Stephan/Mayinger S.6).

Betrachtet man als konkretes Beispiel das ideale Gas und formt die Zustandsgleichung nach T um, so ergibt sich:

$$ T = \begin{cases} \frac{pV}{Nk_B} & \text{also ist } Y = T \text{ und } X_1 = p, X_2 = V, X_3 = \begin{cases} N \\ n \end{cases} \\ \frac{pV}{nR} \end{cases} $$

Im Beispiel der Magnetisierung ist $Y = M$ und $X_{1\ldots4} = N, V, B, T$.

Durch Division einer extensiven Zustandsgröße A durch eine andere extensive Größe B erhält man eine intensive Zustandsgröße. Dabei haben sich folgende Bezeichnung eingebürgert:
So kann zu jeder Größe eine auf die Masse m bezogene spezifische Größe $x = X/m$ berechnet werden. Eine wichtige spezifische Zustandsgröße ist das auf die Masse bezogene spezifische Volumen $v = V/m$, was dem Kehrwert der Dichte $\rho = m/v = 1/v$ entspricht (vgl. Stephan/Mayinger S.7f).

3.3.2 Thermodynamische Prozesse

Wenn ein thermodynamisches System mit der Umgebung in Wechselwirkung steht, in dem etwa das Volumen verändert oder dem System Energie zugeführt wird, ändert sich auch der Zustand des Systems. Man kann sich das vorstellen, als ob eine Reihe von Zustandsänderun-

4 Sätze der Thermodynamik

Um die Vorgänge, die im Rahmen der Thermodynamik ablaufen, quantitativ zu erklären, konnten elementare Hauptsätze über das Verhalten von Gasen und Flüssigkeiten bei Temperaturänderungen formuliert werden. Diese Befunde beruhten meist auf experimentellen Beobachtungen und konnten nicht aus anderen Gesetzmäßigkeiten abgeleitet werden. Die Begründung kann jeweils nur aus mikroskopischen Modellen erfolgen, was per definitionem über den Rahmen der phänomenologischen Thermodynamik hinausgeht.

In diesem Kapitel findet sich der Nullte Hauptsatz der Thermodynamik, der als historischer Nachzügler gilt und elementare Begriffe und Gesetzmäßigkeiten definiert, den von Rudolf Clausius als Energiebilanzgleichung formulierten Ersten Hauptsatz der Thermodynamik, der Arbeit und Wärme als unterschiedliche Möglichkeiten Energie zu transportieren, beschreibt.

4.1 Der Nullte Hauptsatz der Thermodynamik

Mithilfe des Nullten Hauptsatzes der Wärmelehre wird die Temperatur als physikalische Messgröße postuliert, einer Größe, die den Menschen im Alltag vertraut ist. Erst dadurch ist es möglich, den Begriff der Temperatur empirisch einzuführen und die subjektiven Zustandsbe-
schreibungen von warm oder kalt nicht mehr zu gebrauchen (vgl. Nolting S.139f).

Der Nullte Hauptsatz der Wärmelehre hängt mit folgenden Aussagen zusammen:

- T ist eine skalare Messgröße.

- Befinden sich zwei Systeme A und B im Gleichgewicht, dann kann immer gefunden werden, dass $T_A > T_B$ oder $T_A < T_B$ oder $T_A = T_B$. Diese Eigenschaft bezeichnet man als Anordnungsaxiom.

- Für drei Systeme A, B, C mit Temperaturen T_A, T_B, T_C und den Bedingungen $T_A > T_B$ und $T_B > T_C$, dann gilt immer $T_A > T_C$. Diese Eigenschaft wird auch Transitivität genannt.

- Sind zwei Systeme A, B in thermischen Kontakt und das Gesamtsystem $A \cup B$ isoliert, dann gilt für das Gleichgewicht $T_A = T_B = T_{A \cup B}$.

- Sind zwei Systeme voneinander getrennt und gilt $T_A < T_B$, dann gilt für das Gesamtsystem durch Herstellung eines thermischen Kontakts im Gleichgewicht $T_A < T_{A \cup B} < T_B$.

Unter den eben aufgelisteten Punkten ist die Transitivität besonders wichtig. Sie wird normalerweise als der Nullte Hauptsatz bezeichnet und folgendermaßen formuliert:

Befinden sich 2 Systeme A und B jeweils im thermischen Gleichgewicht mit einem dritten, C, so sind sie auch untereinander im thermischen Gleichgewicht.

In dieser Nomenklatur würde „Fiebermessen“ wie folgt ausgedrückt werden:
Zuerst bringt man ein altmodisches Thermometer mit Flüssigkeitssäule mit einem Objekt ins
thermische Gleichgewicht, dessen Temperatur T bekannt ist, zum Beispiel indem man das Thermometer in ein Glas warmes Wasser gibt, also das Thermometer eicht. Anschließend bringt man das Thermometer ins thermische Gleichgewicht mit einem Kind. Falls dies die Flüssigkeitssäule nicht ändert, hat das Kind genau dieselbe Temperatur wie das Wasser. Ersetzt man also im Nullten Hauptsatz das System C durch ein Thermometer, kann man daher folgern:

2 Systeme A und B befinden sich im thermischen Gleichgewicht, wenn sie dieselbe Temperatur haben, auch wenn sie räumlich voneinander getrennt sind.

Die heute verbreitetste Temperaturskala geht auf den schwedischen Astronomen Anders Celsius (1701-1744) zurück, der 1742 eine Temperaturskala einführte, indem er den Schmelzpunkt von Eis und Siedepunkt von Wasser beim Druck $1\ atm\ (=1,01325\ bar)$ festlegte und den Abstand in 100 äquidistante Abschnitte eingeteilt hat. Somit liegt beim Druck $1\ atm$ der Schmelzpunkt von Eis bei $0^\circ C$ und der Siedepunkt von Wasser bei $100^\circ C$ (vgl. Stephan/Mayinger S.14).

1954 wurde in der 10. Generalkonferenz für Maße und Gewichte in Paris der Tripelpunkt des Wassers als Referenzpunkt zur Bestimmung von Temperaturskalen gewählt und ihm der Wert $T_{\text{Tripelpunkt}} = 273,16\ K\ (Kelvin)$ zugewiesen (vgl. Stephan/Mayinger S.13f).
Der Tripelpunkt des Wassers liegt um 0,01 K über dem Schmelzpunkt von Eis. Der Grund für die Festlegung des Tripelpunktes als Fixpunkt für eine Temperaturskala liegt in der einfacheren Reproduzierbarkeit gegenüber dem Eispunkt (vgl. Stephan/Mayinger S.15).

4.2 Der Erste Hauptsatz der Thermodynamik

4.2.1 Wärme

Aus diesem Grund kann Wärme als diejenige Form von Energie definiert werden, die von einem System aufgenommen bzw. abgegeben wird, ohne Arbeit zu leisten (vgl. Nolting S.163). Statistisch kann man zeigen, dass die Temperatur eines Gases als Bewegungsenergie der einzelnen Gasmoleküle interpretiert werden kann. Für ein einatomiges Gas gilt:

\[U = \langle E_{\text{kin}} \rangle = \frac{3}{2} N k_B T = \frac{3}{2} r T , \]

dabei bezeichnet \(\langle E_{\text{kin}} \rangle \) die kinetische Energie.

Je schneller sich die Moleküle in einem System bewegen, desto mehr Wärme besitzt das System.

Diese Bewegungsenergie muss allerdings von der kinetischen Energie des Systems unterschieden werden. Bei der kinetischen Energie des Gesamtsystems muss eine gerichtete Bewegung der Teilchen vorliegen, beispielsweise die Bewegung eines Tanks, wenn ein Fahrzeug eine

4.2.2 Arbeit

Der Begriff „Arbeit“ ist aus der klassischen Mechanik bekannt. Arbeit ist immer dann zu leisten, wenn auf eine Systemgrenze eine Kraft von außen einwirkt und sich der Angriffspunkt der Arbeit verschiebt. Das kann beispielsweise „Volumsarbeit“ sein, wenn über einen Kolben (=die Systemgrenze) Druck auf das Gas in einem Behälter ausgeübt wird. Die Größe der mechanischen Arbeit ist das Skalarprodukt aus dem einwirkenden Kraftvektor \mathbf{F} und der Verschiebung im Angriffspunkt der Kraft:

$$ W_{12} = \int_{1}^{2} \mathbf{F} \cdot d\mathbf{r} $$

Für irreversible thermodynamische Vorgänge wird dieses Konzept günstigerweise mithilfe der Leistung umformuliert. Wir betrachten einen zylinderförmigen Behälter, der in der Mitte durch eine feststellbare, verschiebbare Trennwand in zwei Teile geteilt ist. Diese lasse keinen Wärmeübertrag zu und sei so leicht, dass als nötige Arbeit zum Verschieben nur die Reibungsverluste am Rand aufgebracht werden müssen:

$$ \mathbf{F}_{\text{Reib}} = -\gamma \mathbf{v} $$

Für die erforderliche Arbeit ergibt sich somit:

$$ W_{12} = \int_{1}^{2} \mathbf{F} \cdot d\mathbf{r} = \int_{t_{1}}^{t_{2}} \mathbf{F} \cdot \mathbf{v} dt = \int_{t_{1}}^{t_{2}} P(t) dt $$

Wenn sich der Angriffspunkt der Kraft verschiebt und die Kraft in eine andere Richtung als die Geschwindigkeit des Angriffspunktes wirkt, werden nur jene Komponenten der Kraft berücksichtigt, die in die selbe Richtung wie die Geschwindigkeit zeigen, also parallel zur Geschwindigkeit sind.

Unter Berücksichtigung der zur Geschwindigkeit des Angriffspunktes parallelen Komponenten der Kraft, kann man die Bedingung $P = \mathbf{F} \cdot \mathbf{c}$ in die obige Definition der Arbeit einsetzen und man erhält die bekannte Beziehung:
\[W_{12} = \int_{t_1}^{t_2} P(\tau) \, d\tau = \int_{t_1}^{t_2} F \cdot c \, d\tau = \int_{t_1}^{t_2} \frac{dr}{d\tau} \, d\tau = \int_{1}^{2} F \, dr \]

Die Arbeit ist eine Größe, die beschreibt, wieviel Anstrengung ein Mensch aufbringen muss, um einen Gegenstand gegen eine Kraft zu verschieben. So verrichtet eine Person Arbeit, wenn ein Gegenstand im Schwerefeld der Erde nach oben getragen wird.

Mit der Arbeit ist der Begriff der **potentiellen Energie** verbunden, der eine Fähigkeit zum Verrichten von Arbeit repräsentiert. Besitzt ein Körper viel Energie, kann viel Arbeit verrichtet werden, während bei niedriger Energie nur wenig Arbeit verrichtet werden kann.

Im Falle der Thermodynamik interessiert uns hauptsächlich die „innere“ Energie eines Systems, die bei einer Zustandsänderung in Arbeit umgewandelt werden kann (vgl. Baehr S.47). Ob eine Dampfmaschine auf Meereshöhe oder in den Alpen errichtet wird, ändert zwar die potentielle Energie, nicht aber ihre innere Energie, die beispielsweise in Pumpleistung umgesetzt werden kann.

4.2.3 Volumenänderungsarbeit

Die ersten Dampfmaschinen beruhten im wesentlichen auf einer Verschiebung eines Arbeitskolbens, die durch eine Volumenänderungen des Arbeitsfluids Wasser, aufgrund der herbeigeführten Verdampfung durch Erhitzung, stattfand. Um nun jene Arbeit zu berechnen, die für einen derartigen Prozess benötigt wird, wird folgendes Beispiel betrachtet:

Abbildung 3 zeigt einen zylinderförmigen Behälter, in dem ein Fluid eingeschlossen ist und der von einem beweglichen Kolben verschlossen ist.
In unserem Beispiel betrachten wir ein geschlossenes System, dessen innere Zustände Druck, Volumen und Temperatur von der Arbeit am Kolben beeinflusst werden. Die Fläche A des Kolbens übt auf das Fluid eine Kraft aus, die gegeben ist durch:

$$F = -p' A$$

p' ist der Druck, den das Fluid auf den Kolben ausübt. Wird nun der Kolben um ein Wegstück dr verschoben, ändert sich auch das Volumen im Zylinder um $dV = A \, dr$. Dadurch verschiebt sich die an der Grenze des Systems angreifende Kraft und es wird die Arbeit

$$\delta W^V = F \, dr = -p' A \frac{dV}{A} = -p' \, dV$$

verrichtet. Diese Arbeit entspricht der Energie, die zwischen Kolbenfläche und dem System übertragen wird. Liegt eine Verdichtung vor ($dV < 0$), nimmt das System Energie auf ($\delta W^V > 0$). Bei einer Ausdehnung des Fluids ($dV < 0$) wird Energie in Form von Arbeit an den Kolben abgegeben ($\delta W^V < 0$) (vgl. Baehr S.47).

Wegen der Bewegung des Kolbens ändert sich der wirkende Druck p' und das Volumen V mit der Zeit τ. Man erhält somit für die Größen die Funktionen $p' = p'(t)$ und $V = V(t)$, die mit der Bewegung des Kolbens korrelieren.

Unter der Annahme, dass es sich beim beobachteten Prozess um einen reversiblen Prozess handelt, vereinfacht sich die Berechnung der Arbeit erheblich. Man nimmt an, dass dissipative Effekte, die durch Reibung verursacht werden, nicht auftreten. Somit hängt der Druck p' nicht mehr explizit von der Zeit τ ab, sondern nimmt den Wert des Drucks des Fluids an, der aus

Abbildung 3: Skizze zur Berechnung der Volumenänderungsarbeit, Baehr S.58
der Zustandsgleichung

\[p = p(T, V/m) \] \hspace{1cm} (5)

aus der Temperatur und dem Volumen berechnet werden kann. Für den reversiblen Prozess erhält man für die Änderung der Arbeit:

\[\delta W_{rev}^V = -p' \, dV \] \hspace{1cm} (6)

Da eine quasistatische Zustandsänderung vorliegt, das bedeutet, dass kleine Änderungen der Variablen nur geringe Effekte hervorrufen, ändert sich der Druck im Inneren des Zylinders stetig mit dem Volumen. Somit kann mithilfe der Integralrechnung für die Volumenänderungsarbeit folgender Ausdruck gefunden werden:

\[(W_{12}^V)_{rev} = - \int_{1}^{2} p \, dV \] \hspace{1cm} (7)

Da die Volumenänderungsarbeit vom Verlauf der Zustandsänderung abhängt, also davon wie der Prozess abläuft, ist die Volumenänderungsarbeit eine Prozessgröße und keine Zustandsgröße (vgl. Baehr S.48).

beit eines irreversiblen Prozesses

\[W_{12}^V = - \int_1^2 p \, dV + W_{12}^G \]

(8)

mit der positiven Gestaltänderungsarbeit \(W_{12}^G \geq 0 \), die für den Grenzfall des reversiblen Prozesses verschwindet (vgl. Baehr S.49).

Ist der Zylinder in einer Umgebung mit einem konstanten Druck \(p_U \) (siehe Abbildung 3), was im Falle der Dampfmaschinen durch den Atmosphärendruck der umgebenden Luft gegeben ist, wirkt zusätzlich eine Kraft auf den Kolben:

Abbildung 4: Skizze zur Berechnung der Volumenänderungsarbeit mit äußeren Druck, Baehr S.61

An die Umgebung wird die Verdrängungs- oder Verschiebearbeit \(p_u(V_2 - V_1) \) abgegeben, wodurch man am Kolben die Nutzarbeit

\[W_{12}^n = - \int_1^2 p \, dV + p_u(V_2 - V_1) = - \int_1^2 (p - p_u) \, dV \]

erhält (vgl. Baehr S.50).

Ist bei einer Kompression eines Fluids mit dem Druck \(p \) der Umgebungsdruck \(p_u \) größer als \(p \),
ist die zur Verdichtung aufzubringende Nutzarbeit geringer als die Volumenänderungsarbeit, die vom Fluid aufgenommen wird. Der Anteil, um den die Nutzarbeit geringer ist, wird von der Umgebung beigesteuert. Ist hingegen der Umgebungsdruck \(p_u \) geringer als der Druck des Systems \(p \), ist bei einer Expansion die Nutzarbeit kleiner als die Volumenänderungsarbeit (vgl. Baehr S.50).

\[
W_{12}^n = p_u (V_2 - V_1)
\]

4.2.4 Die Formulierung des Ersten Hauptsatzes

Dass eine Größe, genannt „innere Energie“, existiert, postuliert der Erste Hauptsatz der Wärmelehre. Man versteht darunter nicht die kinetische oder potentielle Energie eines Systems, sondern diejenige Energie, die im betrachteten System, hier in einem Fluid, gespeichert wird. Dies kann zum Beispiel die Rotation von Molekülen, die Schwingung von Atomen sein oder auch die chemische Energie, die für eine Bindung notwendig ist.

Um den Ersten Hauptsatz in mathematischer Sprache formulieren zu können, wird der inneren Energie die Zustandsvariable \(U \) zugewiesen. Die innere Energie \(U \) stellt die gesamte Energie eines Systems ohne Umgebung dar.

\(U \) muss eine eindeutige Funktion der Zustandsvariablen sein. Wäre die Funktion \(U \) nicht eindeutig und könnte man von einem Zustand \(A \) zu einem Zustand \(B \) auf zwei verschiedene Wege (1) und (2) kommen, wobei auch die Energie \(\delta U_{AB} ^1 \) unterschiedlich zu \(\delta U_{AB} ^2 \) ist, zum Beispiel \(\delta U_{AB} ^1 < \delta U_{AB} ^2 \), dann könnte man vom Zustand \(A \) zum Zustand \(B \) auf dem Weg (1) kommen und auf dem Rückweg vom Zustand \(B \) zum Zustand \(A \) über den Weg (2) mehr Energie freisetzen, als hineingesteckt wurde. Diese Eigenschaft wird als \textit{perpetuum mobile erster Art} bezeichnet und ist aufgrund des Energieerhaltungssatzes nicht erlaubt. Daraus folgt, dass \(U \) eine Zustandsgröße ist (vgl. Nolting S.163).
In infinitesimaler Form kann der Erste Hauptsatz in folgender Form dargestellt werden:

\[dU = \delta Q + \delta W \]

\(dU \) bezeichnet die Änderung der inneren Energie, \(\delta Q \) bezeichnet den Wärmeaustausch und \(\delta W \) umfasst alle Beiträge, die zur ausgetauschten Arbeit zusammengefasst werden. Dies können mechanische Arbeit \(\delta W_{mech} \), elektromagnetische Arbeit \(\delta W_{elm} \), chemische Arbeit \(\delta W_{chem} \), elastische Arbeit \(\delta W_{elastisch} \) und viele mehr sein. Es gilt:

\[\delta W = \delta W_{mech} + \delta W_{elm} + \delta W_{chem} + \delta W_{elastisch} + \ldots \]

Betrachtet man die endliche Änderung der inneren Energie zwischen den Zuständen 1 und 2, kann der Erste Hauptsatz umformuliert werden zu:

\[U_2 - U_1 = W_{12} + Q_{12}, \]

wobei \(W_{12} \) die verrichtete Arbeit und \(Q_{12} \) die Änderung der Wärme zwischen den Zuständen 1 und 2 bezeichnet. Für einen Kreisprozess muss gelten:

\[\oint dU = 0 \]

Betrachtet man die unterschiedlichen Klassen von Systemen, kann der Erste Hauptsatz wie folgt formuliert werden.

1. Isolierte Systeme

\[dU = 0 \]
2. Geschlossene Systeme

\[dU = \delta Q + \delta W \]

\(\delta W \) umfasst hier nur mechanische Arbeit \(\delta W_{\text{mech}} \).

3. Offene Systeme

\[dU = \delta Q + \delta W + \delta E_C \]

\(\delta Q \): Wärmeaustausch

\(\delta W \): Arbeitsaustausch

\(\delta E_C \): Teilchenaustauschkontakt, wobei sich dieser Term zusammensetzt aus:

\[\delta E_C = \sum_{i=1}^{n} \mu_i dN_i \]

mit \(N_i \) als Anzahl der Teilchen der Sorte \(i \) und dem chemischen Potential \(\mu_i \), das eine Energie darstellt um ein weiteres Teilchen der Sorte \(i \) hinzuzufügen.

Um die Aussagen des Ersten Hauptsatzes besser zu verstehen, können die mathematischen Aussagen in Worte gefasst werden:

1. Jedes System besitzt eine extensive Zustandsgröße Energie \(U \), genannt „innere Energie“.

4.3 Folgerungen

Da die Energie eines Systems eine extensive Größe ist, besteht die Möglichkeit, die Gesamtenergie eines Systems, das aus mehreren Teilen \(A, B, C, ... \) besteht, aus Teilenergien \(E_A, E_B, E_C, ... \) entsprechend den Teilsystemen zu bestimmen. Es gilt für die Gesamtenergie:

\[E = E_A + E_B + E_C + ... \]

Da in der Thermodynamik im Allgemeinen Zustände von Systemen beschrieben werden, ist die Untersuchung ihrer Lage- und Bewegungsenergie nicht hilfreich. Dazu wird der Energiebegriff um den Begriff der Wärme erweitert (vgl. Stephan/Mayinger S.40).

4.3.1 Energiebilanzgleichungen

Der Erste Hauptsatz der Wärmelehre postuliert einen Erhaltungssatz für die Energie eines Systems. Das bedeutet, dass sich die Gesamtenergie eines Systems durch eine Zu- oder Abfuhr von Energie ändert. Für ein abgeschlossenes System gilt daher, dass die Energie konstant ist (vgl. Stephan/Mayinger S.69f).

Ein nicht abgeschlossenes System, das sich im Anfangszustand 1 mit der Energie E_1 und später im Endzustand 2 mit der Energie E_2 befindet, hat eine Energiedifferenz von $E_2 - E_1$ durch einen Energietransport zwischen den Zuständen 1 und 2 überwunden. Dieser kann durch Verrichten einer Arbeit, durch Wärmeübertragung oder durch einen Materiefluss an den Systemgrenzen erfolgen, wobei die Möglichkeit des Materieflusses nur für offene Systeme möglich ist.

Energie kann durch das Verrichten von Arbeit und durch Wärmeübertrag transportiert werden. Die Energie, die zwischen den Zuständen 1 und 2 durch Arbeit transportiert wird, wird mit dem Zeichen W_{12} und die Energie, die durch Wärmetransport übertragen wird, wird mit dem Zeichen Q_{12} abgekürzt. Wärme und Arbeit sind spezielle Formen von Energie und stellen Prozessgrößen dar. Zwar treten Prozessgrößen nur auf, wenn ein Prozess im Gange ist, allerdings kann mit ihnen und dem Ersten Hauptsatz die Energiebilanzgleichung aufgestellt werden:

$$W_{12} + Q_{12} = U_2 - U_1$$
Diese Formel besagt, dass die Energieänderung eines geschlossenen Systems während eines Prozesses gleich der Energie ist, die beim Prozess die Grenze des Systems als Wärme und als Arbeit durchdringt.

Prozessabläufe sind immer von der Zeit abhängig, weshalb es zielführend ist, die Energiebilanzgleichung differentiell zu betrachten. Für jedes Zeitintervall, das zwischen der Anfangszeit τ_1 und der Zeit zum Erreichen des Endzustandes τ_2 liegt, kann die Energiebilanzgleichung wie folgt geschrieben werden:

$$\delta W + \delta Q = dU$$

dU entspricht der verursachten Änderung der inneren Energie durch die Wärme δQ und der Arbeit δW, die in das System über die Systemgrenze ein- bzw. ausströmen.

Betrachtet man nun die Vorgänge genauer, können im Grenzwert für sehr kleine Zeitintervalle $d\tau$ der Arbeitsstrom P, der üblicherweise als Leistung bezeichnet wird, und der Wärmestrom $\dot{Q}(\tau)$ bestimmt werden:

$$\delta W = P(\tau)d\tau$$
$$\delta Q = \dot{Q}(\tau)d\tau$$

Man erhält dadurch die Leistungsbilanzgleichung

$$P(\tau) + \dot{Q}(\tau) = \frac{dU}{d\tau},$$

die für jeden Augenblick die Energieänderung mit dem Energiestrom durch Wärme und Arbeit verknüpft (vgl. Baehr S.44f).

Somit trifft der Erste Hauptsatz der Thermodynamik quantitative Aussagen über den Zusammenhang der drei Energieformen Arbeit, Wärme und innere Energie.

Ein wesentlicher Sonderfall tritt auf, wenn man einen stationären Prozess betrachtet, denn alle Größen, die in der Leistungsbilanz auftreten, sind konstant. Es gilt somit $dU/d\tau = 0$, und die Leistungsbilanz nimmt die Gestalt

$$P(\tau) + \dot{Q}(\tau) = 0$$
an, wobei die beobachteten Ströme mehrere Teilströme enthalten können. Allgemeiner gilt:

\[\sum_i P_i(\tau) + \sum_i \dot{Q}_i(\tau) = 0 \]

Dies bedeutet, dass sich unter Berücksichtigung der Vorzeichenkonvention für ein geschlossenes System die Summe aller zufließenden und abfließenden Ströme zu null ergibt (vgl. Baehr S.58f).

4.4 Der Zweite Hauptsatz der Thermodynamik

Betrachtet man einen Kolben, der in einem Zylinder ein Fluid einschließt, ist die Bewegung des Kolbens von der Ausdehnung des Fluids abhängig. Das Fluid dehnt sich aufgrund von Erwärmung durch eine Wärmequelle, was meist eine Feuerquelle war. Das heißt, dass Wärme von einem Ort hoher Temperatur zu einem Ort niedrigerer Temperatur fließt.

Die Antwort der Unmöglichkeit dieses Vorgangs liefert der Zweite Hauptsatz der Thermodynamik:

Ähnlich wie im Ersten Hauptsatz wird hier eine neue Zustandsgröße, genannt Entropie mit folgenden Eigenschaften postuliert:

1. Jedes System besitzt eine extensive Zustandsgröße \(S \), die Entropie genannt wird.
2. Die Entropie eines Systems ändert sich ...
 a) ... durch Wärmevertransport über die Systemgrenze (Entropietransport mit Wärme)
 b) ... durch Stofftransport über die Systemgrenze
 c) ... durch irreversible Prozesse im Inneren des Systems (Entropieerzeugung)

3. Die mit der Wärme δQ über die Systemgrenze transportierte Entropie ist

$$ dS = \frac{\delta Q}{T} \quad (9) $$

T stellt die thermodynamische Temperatur an der Stelle der Systemgrenze dar, an der δQ übergeht. Die thermodynamische Temperatur ist eine universelle, nicht-negative Temperatur.

Wie aus dem Ersten Hauptsatz kann man aufgrund der Extensivität der Entropie die Beziehung aufstellen, dass für Teilsystem A, B, C, ... mit den einzelnen Entropien S_A, S_B, S_C, ... für die Gesamtentropie des Systems gilt:

$$ S = S_A + S_B + S_C + ... $$

4.4.1 Der Begriff Entropie

Die Entropie ist zunächst ein sehr abstrakter Begriff, der nun versucht wird, etwas anschaulicher zu erklären. Dazu werden folgende Überlegungen gemacht:

Ein Kolben schließt in einem Zylinder ein Gas ein. Wird der Kolben bewegt, ändert sich das Volumen sowohl innerhalb des Kolbens als auch außerhalb des Kolbens, also der Umgebung. Damit allerdings der Kolben verschoben werden kann, muss Arbeit verrichtet werden, was bedeutet, dass zwischen dem System und der Umgebung ein Austauschprozess stattfindet, bei dem der Zustand (auch die Koordinate) V bewegt wird. Eine anschauliche Erklärung ist, wenn man sagt, dass die Arbeit über die Koordinate V in das System hinein-, oder aus dem System herausfließt. Man kann sich nun die Koordinate V als Kanal vorstellen, der das System mit der
Diplomarbeit Lechner Philipp

Umgebung verbindet und durch den die Arbeit zwischen Umgebung und System ausgetauscht wird (vgl. Stephan/Mayinger S.116f).

Stellt man nun die Frage, über welchen Kanal die Wärme in das System fließt, liegt die Vermutung nahe, dass es sich um die Temperatur T handelt, was sich allerdings als nicht richtig erweist. Würde ein Wärmestrom die Koordinate T ändern, heißt das, dass bei konstanter Temperatur keine Wärme in das System fließen kann, denn die Temperatur müsste unverändert bleiben. Somit müssten alle Zustandsänderungen adiabatisch verlaufen, also Wärme dürfte nicht mit der Umgebung ausgetauscht werden, und bei adiabaten Zustandsänderungen dürfte sich die Temperatur nicht ändern. Dass die Überlegung nicht richtig ist, zeigt die Erfahrung, dass bei einer adiabatischen Zustandsänderung eines idealen Gases die Arbeit eine Änderung der inneren Energie verursacht und somit eine Änderung der Temperatur bewirkt. Anschaulicher ist das Verdampfen von Flüssigkeit, wo beobachtet wird, dass zwar die Temperatur der Flüssigkeit konstant bleibt, aber immer Wärme der Flüssigkeit hinzugeführt wird (vgl. Stephan/Mayinger S.117).

4.4.2 Kreisprozesse und Irreversibilität

Man spricht von einem reversiblen Kreisprozess, wenn der Ausgangszustand erneut ohne Ver-

4.5 Das Nassdampfgebiet

Bei nassem Dampf handelt es sich um ein Gemisch aus siedendem Wasser und gesättigtem Dampf, die miteinander im thermischen Gleichgewicht stehen. Thermisches Gleichgewicht bedeutet, dass sowohl das flüssige, als auch das gasförmige Wasser den gleichen Druck und die gleiche Temperatur haben (vgl. Baehr S.169).

Um zu verdeutlichen, wie es in diesem Zustand innerhalb des Zylinders aussieht, betrachten wir die Abbildung 6:
Situation 1 zeigt einen Kolben, in einem Zylinder, der Wasser einschließt. Das Wasser liegt ausschließlich in flüssiger Form vor, auf das der Gewichtsdruck des Kolbens und der äußere Luftdruck von 1 bar einwirken.

In der dritten Situation liegt das sogenannte Nassdampfgebiet vor. Die siedende Flüssigkeit und der gesättigte Dampf haben die selbe Temperatur. In diesem Zustand ändert sich die Temperatur solange nicht, bis Situation 4 erreicht wird.

Diese Situation ist durch das vollständige Verdampfen der Flüssigkeit gekennzeichnet, weshalb der Zylinder vollständig mit gesättigtem Dampf gefüllt ist.

In Situation 5 ist keine Flüssigkeit mehr vorhanden, weshalb der Dampf die gesamte Wärme aufnimmt. Man spricht hier von einem überhitzen Gas.

Aus dieser Abbildung ist zu entnehmen, dass der meiste Hubweg zwischen Situation 2 und 4 erfolgt. Das Erhitzen einer Flüssigkeit oder eines Dampfes hat nur eine geringe Auswirkung.

Abb. 7: Darstellung der Temperaturänderung bei Verdampfung, Baehr S.168

Den ablaufenden Kreisprozess, den sogenannten Clausius-Rankine Prozess, kann man der Abbildung 8 entnehmen, der in einem \(T-s \)-Diagramm dargestellt ist.
In einem T-s-Diagramm ist Temperatur eines Objekts in Abhängigkeit der Entropie aufgezeichnet. Berechnet man die Fläche der Kurve zwischen 2 Punkten, das heißt wertet man das Integral $\int_a^b T \, ds$ aus, entspricht der Wert des Integrals der Summe aus zurückgeführter Wärme und Verlusten durch Reibung.

- Von 1 auf 2 erfolgt eine Befeuchtung des trockengesättigten Dampfes, was durch eine adiabate reversible Entspannung entsteht.

- Unter Entnahme der Wärme $2ace$, die der Fläche des Rechtecks zwischen den Punkten $2 - a - c - e$ entspricht, erfolgt zwischen den Punkten 2 und a eine Verflüssigung des Wasserdampfes im Kondensator.

- Das Wasser wird an den Punkten a bis a_1 adiabat verdichtet.

- Unter Zufuhr der Wärme a_1bdc, die der Fläche des Trapezes $a_1 - b - d - c$ entspricht, wird das Wasser unter Kesseldruck von der Temperatur a_1 auf die Temperatur b erwärmt.
• Die Verdampfung des Wassers im Kessel erfolgt zwischen \(b \) und \(1 \) Erhöhung der Temperatur, wobei hier wieder der Kreisprozess von vorne beginnt.

4.6 Der Wirkungsgrad

Um die Effizienz einer Wärme-kraftmaschine zu bestimmen, muss der \textit{Wirkungsgrad} einer Maschine bekannt sein. Diese Größe ist definiert als das Verhältnis zwischen gewonnener und hinzugeführter Leistung:

\[\eta = \frac{P_{\text{gewonnen}}}{P_{\text{hinzugeführt}}} \quad (10) \]

Die hinzugeführte Energie umfasst alle möglichen Formen von Leistung, die dazu dienen, ein System zu erwärmen. Im Falle der Dampfmaschine handelt es sich hierbei um die Wärme, die vom Feuer unter dem Kessel in das Wasser im Kessel übergeht.

Die gewonnene Leistung bezeichnet die Leistung, die erzielt wird, wenn eine Maschine eingesetzt wird, wofür sie geschaffen wurde. Im Falle der Dampfmaschine ist das mechanische Leistung, die durch die Hubbewegung des Kolbens im Kessel erzeugt wird. Man kann aber auch noch die Leistungen bestimmen, die nicht mechanisch nutzbar sind, beispielsweise durch Erwärmung der Kesselwände, oder wenn Energie nicht an den Kessel kommt, zum Beispiel durch Vorbeiströmen der heißen Luft, Abstrahlung durch Wärmestrahlung oder durch mechanische Reibung der verwendeten Bauteile.

Um sich die Energieflüsse besser zu veranschaulichen, wurden Energieflussdiagramme gezeichnet, wobei die Dicke der Pfeile den Energieanteilen entspricht.
Aufgrund des Zweiten Hauptsatzes der Thermodynamik kann die einem System hinzugeführte Wärme nie zur Gänze in Arbeit umgewandelt werden. Daraus lässt sich folgern, dass die hinzugeführte Leistung stets größer als die gewonnene Leistung ist. Die Größe des Wirkungsgrades ist somit begrenzt und es gilt:

$$\eta \in]0, 1[$$ (11)

Sadi Carnot hat einen Kreisprozess dargestellt, für den der Wirkungsgrad ein Maximum ergibt. Für den Wirkungsgrad des Carnot-Prozesses gilt:

$$\eta_c = 1 - \frac{T_u}{T}$$ (12)

Dieser stellt den optimalen Wirkungsgrad dar. Das heißt, es kann keine Wärme-Kraftmaschine einen höheren Wirkungsgrad als den Carnotschen Wirkungsgrad erreichen, egal wie raffiniert und durchdacht sie konstruiert wird. T_u ist hier die Umgebungstemperatur und T die Temperatur des Arbeitsfluids (vgl. Stephan/Mayinger S.266).
5 Die Entwicklung der Wattschen Dampfmaschine

Der Siegeszug der Dampfmaschine von James Watt war maßgebend für die industrielle Revolution, die sich nicht nur am Britischen Festland, sondern auch in anderen Teilen der Welt auswirkte.

Dieses Kapitel beschäftigt sich mit der wissenschaftlichen Entwicklung der Dampfmaschine, bis zur Verbesserung durch James Watt und erklärt die Funktionsweise anhand der physikalischen Prinzipien, die in den vorhergehenden Kapiteln erläutert wurden.

5.1 Edward Somerset

Er entwarf eine Apparatur, vermutlich basierend auf den Plänen von *Salomon De Caus*, die in der nachstehenden Abbildung 10 dargestellt ist (vgl. Thurston S.19).

Abbildung 10: *Worcesters* Fontänen, modifiziert entnommen aus Thurston S.21

Basierend auf dieser Beobachtung konnte *Somerset* einen Apparat entwickeln, mit dem im Schloss von Raglan Wasser von einem tiefer gelegenen Reservoir nach oben befördert werden.

Abbildung 11: Somersets Pumpmaschine, Thurston S.22

Trotz der zahlreichen Wissenschafter vor Somerset, die sich mit der Dampfauflösung beschäftigten, wird hier der Beginn der Entwicklung der Dampfmaschinen gesehen, da erstmals ein praktischer Nutzen erkannt und das Gerät dafür auch verwendet wurde. Die Entwicklungen und Apparaturen davor, wurden meist als Zierobjekte oder Spielereien, wie etwa als Springbrunnen, genutzt (vgl. Thurston S.23).
5.2 Jean Hautefeuille

Jean Hautefeuille war Sohn eines einfachen Fleischhauers, gelangte aber durch die Adoption durch die Herzogin von Bouillon in ein bildungsfreundliches Umfeld. Er bekam die Möglichkeit viele Baupläne und Konstruktionen anderer Ingenieure zu studieren, wodurch er zu einem der gebildetsten und größten Mechaniker der damaligen Zeit wurde. (vgl. Thurston S.24).

5.3 Huygens’ Idee

1680 schreibt Christiaan Huygens in einem Brief an die Akademie der Wissenschaften über die Ausdehnung von Schießpulver bei dessen Entzündung, und dass es möglich wäre, die frei
gewordene Energie mechanisch nutzbar zu machen. Er schlug auch gleichzeitig den Bau einer Maschine vor, die dies ermöglichen sollte (vgl. Thurston S.25f).

Abbildung 12: Modell für *Huygens* Schießpulvermaschine, Thurston S.26

Es gibt auch hier keine Nachweise über eine Realisierung dieser Maschine, obwohl diese Erfindung für den Menschen durchaus zweckdienlich genutzt hätte werden können (vgl. Thurston S.26).

5.4 Thomas Savery

Da das Patent gesichert war, ging Savery an die Vermarktung seines Produktes und wählte einen für damals ungewöhnlichen Weg. Er präsentierte nicht nur seine Pläne, sondern stellte seine Erfindung mithilfe verschiedenster Methoden vor und versuchte so den Menschen die Funktionsweise zu erklären, damit die Maschine besser verstanden werden konnte. So präsentierte er unter anderem Skizzen und stellte ein Modell zur Schau, das die Funktion der Maschine zeigte (vgl. Thurston S.33).
Abbildung 13: *Saverys* Pumpmaschine, Thurston S.34

Abbildung 14: Modell für die verbesserte Pumpmaschine mit Kühlung des Zylinders durch Wasser, Thurston S.35

Diese Verbesserung schaffte allerdings ein anderes Problem, denn das zur Kühlung verwendete Wasser wird vom Reservoir über den Zylinder B gegossen. Deshalb erhöht sich auch die Temperatur des zur Kühlung herangezogenen Wassers, da der Dampf beim Kondensieren Wärme an die Kesselwände und diese die Wärme an das Kühlwasser abgeben. Beim Durchlauf mehrerer Maschinen, die für das Hochpumpen größerer Höhenunterschiede nötig sind, erwärmt sich das zu pumpende Wasser immer mehr. Dadurch verringern sich die Temperaturunterschiede zwischen Kühlungswasser, und dem Wasserdampf, was wiederum eine langsamer Kondensation zur Folge hat (vgl. Thurston S.35).

Diese Variante der Dampfpumpe, die auch „Kensington Maschine“ genannt wird, hatte im Zylinder B ein Fassungsvermögen von 13 Gallonen, was einem Volumen von ungefähr 59 Litern entspricht und konnte einen Höhenunterschied von 42 ft, rund 12,8 $Metern$, überwinden. Da-
bei wurde der Zylinder pro Minute vier mal gefüllt und wieder entleert, was einer Leistung von 14400 Litern gepumpten Wassers pro Stunde entspricht. Allerdings musste die Kensington Maschine robuster gebaut werden, da der hydrostatische Druck im Inneren der Rohre wegen der erhöhten maximalen Pumphöhe nahezu verdoppelt wurde (vgl. Thurston S.35).

Eine weite Verbreitung der Dampfpumpe erfolgte erst nach dem Tod von Thomas Savery. Die Maschine wurde vor allem genutzt, um Wasser aus Bergwerken zu pumpen, aber auch um höher gelegene Siedlungen oder Anwesen mit Frischwasser zu versorgen (vgl. Thurston S.41f).

5.5 Überlegungen von Denis Papin

1679, nachdem Papin aus Frankreich wegen seines Glaubens vertrieben wurde, entwickelte er einen Dampfdruckkochtopf, mit dem das Kochen unter hohem Druck möglich wurde (vgl. Dickinson S.9).

Abbildung 15: Papinscher Topf, Thurston S.48

Unschwer erkennt man, dass die in Abbildung 16 dargestellte Konstruktion sehr der Maschine von *Huygens* in Abbildung 12 ähnelt, was aufgrund der beruflichen Verbindung von *Papin* und *Huygens* nicht verwunderlich ist.

Im Kolben A befindet sich etwas Wasser, das verdampft wird, wodurch der Druck im Innen-

Das Modell hatte einen Durchmesser von 2,5\ inch, etwa 6,35\ cm, und konnte laut \textit{Papin} pro Minute 60 \textit{Pfund} Wasser, etwa 27\ kg, abpumpen. Er berechnete, dass bei einer Maschine mit dem Zylinderdurchmesser von 60\ cm und einem Hubweg von 1,2\ m das Wasser mit der Masse von 3600\ kg pro Minute eine Strecke von 1,2\ m angehoben werden kann, was der Leistung von 708,48\ W und etwa einer Pferdestärke von 735,49\ W entspricht (vgl. Thurston S.50f).

Trotz der Vielzahl an Verwendungsmöglichkeiten seiner Erfindung, vor allem neuer Methoden um das Wasser im Boiler zu verdampfen und anderen Weiterentwicklungen, blieb es \textit{Papin} aufgrund seines Todes 1712 verwehrt, eine seiner Dampfmaschinen im Einsatz zu sehen (vgl. Matschoss S.366).

5.6 Die Atmosphärische Dampfmaschine nach Thomas Newcomen

Abbildung 17: Schematischer Aufbau einer Feuermaschine von Thomas Newcomen, modifiziert entnommen aus Thurston S.59

In Abbildung 17 ist der Aufbau der atmosphärischen Dampfmaschine zu erkennen. Hier ist \(b \) der Boiler, \(a \) der Arbeitszylinder, und \(k \) ein Gestänge, mithilfe dessen Wasser abgepumpt wird (vgl. Thurston S.58f).

Im Boiler wird, wie in anderen Dampfmaschinen, Wasser erhitzen, zum Verdampfen gebracht und der entstandene Dampf durch das Ventil \(d \) in den Zylinder \(a \) geleitet und somit der Kolben angehoben. Sobald sich der Zylinder \(a \) mit Dampf gefüllt hat, wird das Ventil \(d \), zunächst manuell durch eine Person, geschlossen und das Ventil \(j \) geöffnet. Durch das Öffnen von \(j \) strömt nun Wasser aus dem höher gelegenen Reservoir \(g \) in den Zylinder und bringt den Wasserdampf zum Kondensieren, wodurch weiterer Folge ein niedrigerer Druck im Zylinder \(a \) als in der Umgebung vorliegt. Dadurch kann der Druck der Atmosphäre den Kolben \(s \) nach unten bewegen. Das entstandene flüssige Wasser aus Kondensation und Einleitung durch \(j \) wird über die Ableitung \(p \) in eine anderes Wasserreservoir geleitet. Ist der Kolben am Boden des Zylinders angekommen, wird das Ventil \(d \) wieder geöffnet, und der Prozess beginnt von Neuem.
Die in N dargestellte Öffnung ist ein Überdruckventil, das verhindern soll, dass der Boiler zu großem Druck ausgesetzt ist (vgl. Thurston S.59f).

Bewegt sich nun der Kolben nach oben, beginnt sich auch der Balancier, von dem ein Ende mit dem Kolben verbunden und im Punkt r drehbar gelagert ist, zu bewegen. Da sich hier die rechte Seite nach oben bewegt, muss sich wegen der starren Verbindung die linke Seite nach unten bewegen, während das Gestänge k in das Wasser getaucht wird. Der Haken m kann genutzt werden, um den Balancier mit einem Gegengewicht zu versetzen, damit der Betrieb effizienter wird, beispielsweise für den Fall, dass die Kolbenbewegung gehemmt wird, wenn der Balancier nicht richtig gelagert wird, oder viel Wasser gepumpt werden muss (vgl. Thurston S.59).

Eine funktionelle Schwäche hatte die Maschine anfangs allerdings noch. Es mussten die Ventile d und j abwechselnd per Hand geöffnet werden, um den Betrieb von 6-10 Hubbewegungen pro Minute der Dampfmaschine aufrecht zu erhalten. Diese Aufgabe erfüllte einmal ein Junge namens *Humphrey Potter*, der auf die Idee gekommen ist, die beiden Ventile miteinander zu verbinden. Eine Legende besagt, dass es ihm langweilig wurde, die Ventile zu betätigen, während seine Freunde spielen konnten. Ob diese Geschichte so stimmt, kann durchaus bezweifelt werden, allerdings stellt dieser Schritt die erste automatische Regelung eines Prozesses dar,
die Henry Beighton übernahm und die Newcomensche Dampfmaschine weiterentwickelte. Nach dieser Optimierung war es möglich, 15 bis 16 Hubbewegungen pro Minute durchzuführen (vgl. Thurston S.61).

Thurston beschreibt ein Buch, „Illustration of the Application of the Newcomen Engine to the Drainage of Mines“, in dem die Bauart einer kleinen Version der Newcomen’schen Maschine mitsamt ihrer Leistungsfähigkeit beschrieben wird. Dabei ist von einem Arbeitskolben mit 60 cm Durchmesser die Rede, der eine Wassersäule mit einem Gewicht von 1600 kg ungefähr eine Höhe 1,49 m anheben konnte. Da die Maschine 15 Arbeitsprozesse pro Minute durchführte, also in Summe eine Pumphöhe von 22,48 m pro Minute erreichte, lässt die Leistung berechnen (vgl. Thurston S.62):

\[P = \frac{W}{t} = \frac{mgh}{t} = \frac{1600 \, kg \cdot 9.81 \, km}{s^2 \cdot 60 \, s} = \frac{22,48 \, m}{60} = 5,975 \, kW \]

5,975 kW entsprechen in etwa 8,13 PS.

Abbildung 18: Schematischer Aufbau der Newcomenschen Feuermaschine, Thurston S.63

Abbildung 18 zeigt ein Bild mit der verbesserten Ventilbedienung von Henry Beighton. Dazu ist das Element r zu nennen. Es wurde als Schaltbaum, Schaltrute oder Schalträhen bezeich-
Diplomarbeit
Lechner Philipp

In Abbildung 19 kann man die prinzipielle Funktionsweise eines verwendeten Boilers erkennen, der zur Erwärmung von Wasser optimiert wurde.

Abbildung 19: Aufbau eines Boilers für eine Dampfmaschine, modifiziert entnommen aus Thurston S.67

Der linke Teil der Abbildung zeigt die Seitenansicht und der rechte Teil zeigt die Draufsicht.

Durch experimentelle Versuche konnte der Schmied John Smeaton den Arbeitsprozess der Maschine erneut optimieren. Er verwendete dazu höhere Zylinder mit einem größeren Hubweg und ermöglichte so durch eine größere Dampfproduktion eine schnellere Bewegung des Arbeitskolbens und somit einen schnelleren Betrieb. Für die Weiterentwicklung ging Smeaton äußerst systematisch vor. Er bestimmte beispielsweise die benötigte Menge an Brennstoff um Wasser in eine bestimmte, aber gleichbleibende Höhe zu befördern. So konnte er eine Maschine bauen, die mit $38kg$ Kohle, einem Kolbendurchmesser von $24,5cm$ und einer Hubhöhe von $90cm$ eine Wassermasse von $1255177,31kg$ in eine Höhe von $30cm$ befördern konnte (vgl. Thurston S.68f).

Nicht nur in den Kohlebergwerken Großbritanniens fanden die Dampfmaschinen Einsatz. Aufgrund der Leistungsfähigkeit wurden sie auch in anderen Teilen Europas eingesetzt, wie
etwa in Russland und Holland (vgl. Thurston S.74).

1773 plante Smeaton den Bau einer Dampfmaschine im Hafen von Sankt Petersburg, um das von Peter dem Großen erbaute Dock trocken zu legen, das groß genug war um zehn Schiffe anlegen zu lassen. Vor der Dampfmaschine von Smeaton wurde das Dock mit Windmühlen trockengelegt, die allerdings langsam und ineffizient arbeiteten. Das Dock konnte nicht ganz trocken gelegt werden, obwohl die Windmühlen bis zu einem Jahr arbeiteten, was bedeutete, dass die Docks wegen der Vereisung im Winter nur im Sommer verwendet werden konnten (vgl. Thurston S.74).

1777 wurde die Dampfmaschine in Sankt Petersburg gestartet, die einen Durchmesser des Arbeitskolbens von 1,68 m mit einem Hubweg von 2,55 m besaß. Zudem verwendete Smeaton 3 Boiler, jeweils mit einem Durchmesser von 3 m und einer Höhe von 4,88 m (vgl. Thurston S.74).

Eine andere, sehr erfolgreiche Verwendung der Feuermaschine wurde in Holland gefunden, wo das Meer aufgrund von Tidenbewegung und Stürmen die niedriger gelegenen Landgebiete regelmäßig überflutete. Hier wurden bis 1840 bis zu 12 000 Windmühlen zum Abpumpen des Überflutungswasser verwendet. Die ersten Maschinen wurden zwischen 1777 und 1778 errichtet, um 34 Windmühlen zu unterstützen, die einen See in der Nähe von Rotterdam, mit einer Fläche von 28,33 km² trocken legen sollten, der 4 m unter dem Niveau des Flusses Maas liegt. Der Zylinder hatte einen Durchmesser von 1,32 m und einen Kolbenweg von 2,7 m. Mit dieser Maschine wurden in Summe sechs Pumpen angetrieben, von denen 2 bei hohem Tidenstand arbeiteten und die restlichen vier sukzessive dazugeschaltet werden konnten, wenn der Wasserstand zu sinken begann (vgl. Thurston S.74f).

Zwar erscheint diese Maschine relativ groß, besaß aber eine wesentlich geringere Effizienz als jene, die 60 Jahre später errichtet wurde um das Harleemer Meer trocken zu legen. Diese Maschinen hatten eine Zylinderdurchmesser von 4 m und einen Hubweg des Kolbens von 3 m (vgl. Thurston S.75).

In den letzten drei Jahrzehnten des 18. Jahrhunderts war die Dampfmaschine nach Thomas Newcomen, mit den Verbesserungen durch John Smeaton, eine etablierte Maschine, die das Trockenlegen von Seen, Docks und Bergwerken und somit einen ökonomischen Vorteil ge-
genüber anderen Nationen schaffte (vgl. Thurston S.77f).
Obwohl die Maschine funktional durch Einführung von optimierten Bauteilen und komplexen Mechanismen immer wieder verbessert wurde, lag der Wirkungsgrad der Feuermaschinen, wie in Kapitel 4.6 beschrieben, unter einem Prozent. Dies lag vor allem daran, dass die Zylinder aus Gusseisen gefertigt wurden, um zuverlässig eine große Pumphöhe und somit einen hohen Druck erreichen zu können. Wanddicken mit bis zu $2,45\,cm$ waren üblich, was eine enorme Wassermenge zur Kühlung benötigte, um den enthaltenen Dampf zu kondensieren und darauffin wieder viel Energie erforderlich machte, damit der Mantel Dampftemperatur erreichte, um vorzeitiges Kondensieren zu verhindern. Spöttisch wurde sogar behauptet, dass man für den Betrieb einer Dampfmaschine zwei Bergwerke brauchte, ein Eisenbergwerk für den Bau und ein Kohlebergwerk für den Betrieb (vgl. Eckoldt, S.42).
Die größte Maschine erreichte eine Leistung von $76\,PS = 55,89\,kW$ bei einem Zylinderdurchmesser von $1,8\,m$ und Hubwegen von $2,9\,m$ (vgl. Eckoldt, S.42).

5.7 Die verbesserte Dampfmaschine von James Watt

Dampfes und die Kondensation von Wasserdampf beobachtete, die Idee zur Dampfmaschine gehabt. Diese Geschichte wurde von seiner Tante erzählt, um die Begabung ihres Neffen zu betonen (vgl. Hart S.35f).

Obwohl dieses erwähnte Modell, zu sehen in Abbildung 20, maßstabsgetreu verkleinert wurde, war es mit einem Boiler ausgestattet, der nicht im Stande war, genug Dampf zu produzieren, um den Kolben anzutreiben. Der Boiler hatte einen Durchmesser von lediglich 22,8 cm im Vergleich zum Zylinder, mit Durchmesser von 5 cm und einem Hubweg von 15 cm des Kolbens. Watt konstruierte einen neuen Boiler, mit dem es auch möglich war, die Menge von Wasser zu bestimmen, die nötig ist, um ausreichend Dampf für den Betrieb zu erzeugen und auch die Menge von Dampf zu messen, die bei einem Arbeitsgang des Kolbens verbraucht wurde. „Verbraucht“ meint hier jene Menge an Wasserdampf, die kondensiert, um den Kolben zu bewegen (vgl. Thurston S.84).

So fand Watt heraus, dass Dampf mehr Wärme aufnehmen kann als die selbe Menge flüssigen Wassers. Da es gelang, die relative Masse von Wasser und Dampf bei einem Arbeitsgang des Kolbens zu bestimmen, konnte Watt indirekt die latente Wärme nachweisen. Bei der latenten Wärme handelt es sich um jene Energie, die benötigt wird, um bei konstanter Temperatur den Übergang von einer Phase zu einer anderen, in diesem Fall von flüssig zu gasförmig, zu er-
Diplomarbeit Lechner Philipp

möglichen (vgl. Thurston S.84).

Watt beschrieb folgende zu beachtende Aspekte (vgl. Thurston S.85f):

- An der Oberfläche des Zylinders, der meist aus Messing oder Gusseisen gebaut wurde und demnach ein guter Wärmeleiter war, wurde Energie verloren.

- Durch das nötige Abkühlen des Innenraums des Zylinders, um eine Kondensation herbeizuführen, wurde folglich auch der Zylinder selber abgekühlt, und musste wieder erwärmt werden, damit der neuerlich eingeführte Wasserdampf nicht zu früh kondensiert.

- Aufgrund der unregelmäßigen Kondensation im Zylinder blieben an manchen Stellen das Wasser gasförmig. Daher konnte nicht der gesamte Innenraum des Zylinders für den Arbeitstakt genutzt werden.

Weiters bestimmte Watt die Menge an Wasserdampf, die bei jedem Arbeitsgang verbraucht wird und jene Dampfmenge, die benötigt wird, um den Zylinder zu füllen. Die Feststellung, dass etwa drei Viertel des eingeleiteten Dampfes unnötig in den Zylinder gelangt, stellte einen großen energetischen Verlust dar. Die Versuchsreihe zur Bestimmung der benötigten Menge
an Wasser zur Kondensation des eingeleiteten Dampfes bestätigte seine Hypothese. Watt fand bei einer Temperatur des eingespritzten Wassers von 22° C heraus, dass ein halbes Kilogramm Wasser ausreicht, um 3 kg Wasser mit dieser Temperatur anzuheben. Zudem fand er heraus, dass die bisherige Menge an eingespritztem Wasser um das vierfache zu groß ist, als eigentlich benötigt wird, um die Dampfmenge eines optimal gefüllten Zylinder zu kondensieren (vgl. Thurston S.86).

Watt hatte aus seiner Erkenntnis sechs Aspekte festgemacht, die den Betrieb der Maschine beeinflussen (vgl. Thurston S.86f):

2. Die Ausdehnung von Wasserdampf im Vergleich zu flüssigem Wasser.

3. Die Menge an verdampftem Wasser bei Erhitzen durch eine bestimmte Menge an Kohle.

5. Die Menge an Dampf, die benötigt wird um einen Arbeitsschritt einer modellhaften Newcomen-Maschine mit einem Zylinderdurchmesser von 15,24 cm und einem Hubweg von 30,5 cm durchzuführen.

6. Die Menge an kaltem Wasser, die pro Zyklus benötigt wird, um bei einem in Punkt 5 beschriebenen Zylinder, eine Kraft zu ermöglichen, die pro Quadratzentimeter Kolbenfläche ein Gewicht von 0,48 kg anheben kann.

Mit diesen Überlegungen konnte Watt zielgerichtet an der Verbesserung der Maschine arbeiten und etwaige Mängel beheben. Vor allem aufgrund der systematischen Vorgehensweise entwickelte Watt ein Verständnis über die physikalischen Ursachen der Ineffizienz. Die Überlegung, dass die Kontaktfläche des Zylinders immer so heiß sein soll wie der Wasserdampf, gab der Dampfmaschine von James Watt die charakteristischen Bauteile, den Kondensator und den Dampfmantel, die die Leistung erhöhten und wesentliche Verbesserungen zu den bisher
verwendeten Dampfmaschinen, aufgrund ihres hohen Energieverbrauchs, ermöglichte (vgl. Eckoldt S.46).

Diese Änderungen sind in folgendem Versuchsaufbau zu finden:

Abbildung 21: Experimenteller Aufbau zur Optimierung der Dampfmaschinen, Eckoldt S.46

In diesem Modell offenbart sich auch ein weiterer Unterschied zur Maschine von Newcomen. Der Kolben wird mit Dampf nach oben, also gegen die Schwerkraft, bewegt. Im weiteren Arbeitsprozess wird die Abwärtsbewegung durch Einströmen von Dampf oberhalb des Kolbens begünstigt (vgl. Eckoldt S.46).

Der Kondensator funktionierte anfangs nicht so effizient wie Watt erwartete, da er nur auf dem Prinzip der Oberflächenkondensation beruhte, indem Watt den Dampf in ein Rohr leitete, das

Dieses Experiment gelang James Watt im kleinen Rahmen, und er konnte dabei eine Masse von 8,1 kg anheben. Dies veranlasste ihn eine größere Maschine zu bauen, deren Testbetrieb ebenfalls erfolgreich verlief und seine Erwartungen erfüllte (vgl. Thurston S.89).

James Watt zu werden, und seine eigenen Experimente nicht mehr zu verfolgen (vgl. Thurston S.90, S.97).

In Soho traf Watt auch auf Dr. Small, mit dem er über die Möglichkeit sprach, die Dampfmaschine zu modifizieren, um damit Gefährte anzutreiben. Trotz der vielen neu geknüpften Kontakte musste Watt zurück nach Schottland, da er noch einen Vertrag mit seinem alten Geldgeber, hatte. Erst 1774 konnte Watt nach Birmingham umziehen, nachdem er die restlichen Arbeiten in Glasgow vollendet hatte (vgl. Thurston S.97).

In Birmingham begann er an der Fortsetzung der Arbeit an seinen, nur teilweise vollendeten Maschinen, die ungenutzt in Kinneil, Schottland, umherstanden und dementsprechend verwittert und beschädigt waren. Der Grund für das Unterbrechen der Arbeit war die bereits erwähnte finanzielle und persönliche Krise. Die Teile der Maschine wurden Watt nach Birmingham geschickt, wo er feststellte, in welchem, teils maroden Zustand sie waren. (vgl. Thurston S.97)

Abbildung 22: Watts Dampfmaschine von 1774, modifiziert entnommen aus Thurston S.98

Das Patent von 1769 beschreibt folgende Erfindungen, wobei Watt in der Originalschrift zur Aufzählung der Patentbeschreibung die erste Person verwendet (vgl. Thurston S.99ff):

3. Luft oder Dampf, der nicht zur Kondensation gebracht werden kann, erschwert den Arbeitsprozess und wird dem Kondensator entzogen, entweder durch die Maschine selbst oder auf eine andere Weise.
4. _Im Gegensatz zu anderen Maschinen, bei denen der atmosphärische Druck den Kolben bewegt, wird auf den Kolben, oder andere Bauteile, die diese Aufgabe erfüllen sollen, mithilfe von Dampf ein Druck ausgeübt, der zur Bewegung des Kolbens führt. Sollte nicht genügend Wasser vorhanden sein, um eine Kondensation des Dampfes zu ermöglichen, wird der Dampf in die freie Umgebung entlassen._

6. _In manchen Fällen wird Dampf verwendet, der sich nicht kondensieren lässt, aber aufgrund der Expansion durch Wärmezufuhr eine Maschine antreibt._

7. _Anstatt Wasser zu verwenden, um den Kolben luft- oder dampfdicht zu machen, werden Öle, Wachse, harzige Gegenstände, Fette von Tieren, Quecksilber oder andere flüssige Metalle verwendet._

Zwar ermöglichten diese sieben besprochenen Aspekte eine wesentliche Erhöhung der Effizienz der Wattschen Maschine im Vergleich zur Newcomenschen Maschine, allerdings stieß Watt auf ein anderes Problem. Es hatte sich beim Bau diverser Newcomen-Maschinen bereits gezeigt, dass die Möglichkeiten der Schmiede bzw. Maschinenbauer begrenzt waren, um derart komplexe Maschinen in einer Genauigkeit und Sorgfalt zu errichten, die einen fehlerlosen Betrieb ermöglichten. Vor allem gab es Probleme in der Produktion von tatsächlich zylindrischen Dampfzylindern, deren Abweichungen von der Zylinderform zu offenen Stellen zwi-

In der Zeit zwischen 1775 und 1785 konnten die Geschäftspartner fünf Erneuerungen und einige neue unabhängige Erfindungen patentieren (vgl. Thurston S.104).

Abbildung 23: Dampfmaschine mit Planetengetriebe zur Erzeugung einer Drehbewegung, Thurston S.104

Das nächste Patent von Watt beschreibt fünf Erneuerungen und Erfindungen, zu denen auch das bereits beschriebene Dampfrad zählt (vgl. Thurston S.104f):

1. Die Ausdehnung von Wasserdampf und sechs Methoden wie sie genutzt werden kann.

3. Die Doppel- oder kombinierte Dampfmaschine, bestehend aus zwei Zylindern, die zusammen oder alleine betrieben werden können.

4. Eine Zahnstange, die nicht nur eine Hubbewegung, sondern auch Zugbewegung, überträgt.

5. Eine rotierende Maschine, die auch Dampfrad genannt wurde.

Der erste Punkt des Patents stützt sich auf eine Beobachtung, bei der Watt feststellte, dass der Betrieb am sparsamsten war, wenn nach einem Viertel der Hubbewegung des Kolbens kein Dampf mehr einströmte. In einem Brief an Dr. Small erklärte er das Prinzip anhand folgender Skizze (siehe Abbildung 24).
Watt bemerkte, dass der Druck des Dampfes innerhalb des Zylinders indirekt proportional zur Hubbewegung des Kolbens ist und ab einem Viertel der Hubbewegung des Kolbens im Inneren des Zylinders abzunehmen beginnt. Das heißt, dass die eingeströmte Menge an Dampf Einfluss auf die wirkende Kraft auf den Kolben hat. Watt stellte fest, dass bei einer vollen Füllung des Zylinders, was dem vierfachen Volumen des reduzierten einströmenden Dampfes entspricht, lediglich die doppelte Arbeit des Kolbens verrichtet wird (vgl. Thurston S.107). Watt erkannte allerdings, dass die Arbeit an der einströmenden Menge wenig zur Gesamteffizienz der Maschine beitrug, weshalb er keine weiteren Entwicklungen durchführte. Angemerkt sei noch, dass die Bestimmung der Kurve zur Druckabnahme rein theoretisch durchgeführt wurde, und Watt schon die p-V-Diagramme zur Darstellung thermodynamischer Prozesse verwendete (vgl. Matschoss S.73).

Aufgrund dieser Erkenntnis, entwickelte Watt die sogenannte „Doppelmaschine“, die zwei Zylinder für den Betrieb nutzten: Bei halbem Zylindervolumen einer vergleichbaren normalen Maschine, erreichten diese Doppelmaschine mehr als die doppelte Leistung (vgl. Matschoss S.73).

Im wesentlichen beruhen alle weiteren Fortschritte, wie die Hämmersmaschine und die Doppelmachine, auf den Verbesserungen, die Watt in seinem Patent von 1769 formulierte und 1774 zu ersten mal in die Tat umsetzen konnte (vgl. Thurston S.119, S.125).

6 Auswirkungen auf die Gesellschaft - Die Industrielle Revolution

Ein Flaschenzug mit Rollen und Laufräder, in denen Sklaven ein Rad zum Drehen brachten, stellten frühe Gerätschaften dar, die es ermöglichten menschliche Kraft effektiv zu nutzen und das Arbeiten zu erleichtern (vgl. Matschoss S.5, S.9).

An dieser Stelle traten die Dampfmaschinen von Thomas Newcomen und später James Watt auf, die das Arbeiten in den Bergwerken erheblich erleichterten.

6.1 Der Begriff der Industriellen Revolution

heute noch spürbar sind. Aufgrund der Komplexität der Geschehnisse ist es schwierig eine ge-
naue Datierung der Industriellen Revolution vorzunehmen. Historiker sind sich großteils über
den Beginn einig, nämlich kurz nach 1750, haben aber verschiedene Ansichten über das Ende,
das je nach Ansicht mit dem Ende des ersten Weltkrieges zusammenfällt oder schon im ersten

Ein wesentliches Merkmal der Industriellen Revolution ist die „immer raschere Umwandlung
einer agrarisch strukturierten Gesellschaft in eine ökonomisch weitaus stärkere Industriege-
sellschaft in der Zeit von der zweiten Hälfte des 18. Jahrhunderts bis zum 20. Jahrhundert in
europäischen, nordamerikanischen und fernöstlichen Regionen (Bialas S.77)“.

Im Unterschied zum Begriff Industrialisierung, der dem Begriff der Industriellen Revoluti-
on sehr ähnelt und oft mit der selben Bedeutung verwendet wird, beschreibt der Begriff der
Industriellen Revolution den Prozess, der in England unter bestimmten Voraussetzungen zu
großen ökonomischen und gesellschaftlichen Veränderungen führte und der danach in andere-
en Nationen stattfand (vgl. Bialas S.77f). Vor allem in den Nationen Europas mit ähnlichen
Voraussetzungen wie England, haben Industrielle Revolutionen begonnen und zwar relativ

Zwar stellte die Dampfmaschine von James Watt ein wichtiges Element zum Voranschreiten
der Industriellen Revolution des 18. Jahrhunderts dar, jedoch gehen Historiker nicht gerne von
monokausalen Ursachen in der Geschichte aus (vgl. Bialas S.79). Daher kann die Industrielle
Revolution nicht alleine auf die Dampfmaschine von James Watt zurückgeführt werden,
sondern benötigte auch noch andere Voraussetzungen, die für das Einsetzen der Industriel-
len Revolution notwendig waren. Zu diesen zählte unter anderem die vorwiegend agrarisch
orientierte Gesellschaft, der langsame Informationsaustausch, der langsame Verkehrsfluss so-
wohl innerhalb eines Staates als auch zwischen den Staaten und die begonnene Aufteilung
der Welt in Kolonien durch die ökonomisch stärksten Nationen Europas. Nicht zu vergessen
ist auch die politische und wirtschaftliche Autonomie der entwicklungsfähigen Nationen und
auch eine Weltanschauung, die das Voranschreiten der Industriellen Revolution unterstützt
und legitimierte (vgl. Bialas S.78).

Zunächst verlief die Industrielle Revolution anfangs als langsamer und unkontrollierter Pro-

6.2 Voraussetzungen der Industriellen Revolution

6.2.1 Die Agrarrevolution

Bis ins 17. Jahrhundert wurden im Ackerbau arbeitsintensive Methoden mit geringer Produktivität angewendet, die zum Teil aus dem Mittelalter erhalten blieben. Ernteausfälle aufgrund...
von schlechten Witterungsverhältnissen hatten nicht nur Konsequenzen auf das Nahrungsmittelangebot, sondern auch auf die Menge des Saatgutes, das zur nächsten Saison zur Verfügung stand. Mussten Körner, die eigentlich als Saatgut für die nächste Saison aufbewahrt wurden, verzehrt werden, um nicht zu verhungern, führte das zu einem reduzierten Ertrag der nächsten Saison. Es kam so zu zyklisch auftretenden Hungerperioden, die aufgrund von Mangelernährung Epidemien und Seuchen den Weg ebneten und die Bevölkerung dezimierten (vgl. Liedtke S.12).

Aufgrund des Bedarfs an tierischen Produkten, wie Wolle, Leder, Milch und Fleisch musste eine Balance der Flächennutzung zwischen Nahrung für Menschen und Nahrung für Vieh gehalten werden. Dadurch konnte nicht die ganze verfügbare Ackerfläche für den Anbau an Nahrungsmitteln für den Menschen genutzt werden. Musste beispielsweise viel Ackerfläche für den Anbau von Weizen genutzt werden, um die Bevölkerung zu ernähren, stand gleichzeitig weniger Futter für Tiere zur Verfügung, was wiederum weniger Dünger für die nächste Saison bedeutete (vgl. Liedtke S.12f).

Der Anbau von Rüben, Raps und Klee stellte eine Kultivierung von Pflanzen dar, die einerseits vom Menschen direkt verzehrt werden konnten, andererseits auch dem Vieh gefüttert werden konnten und dem Boden wieder Nährstoffe zurückgaben. Durch Charles Townshend, der Mitglied des Hochadels war und sich erst in den letzten Jahren seines Lebens mit dem Ackerbau beschäftigte, wurde die Rotation von Feldfrüchten eingeführt. Anstatt der herkömmlichen Dreifelderwirtschaft, in der ein Teil des Ackers immer brach liegen musste um sich zu erhöhen, wurde durch den wechselnden Anbau von Weizen, Gerste oder Hafer, Gras und Rüben...
Diplomarbeit

Lechner Philipp

Durch die Zuchterfolge Bakewells und anderer nachfolgender Züchter konnte auf weniger Weideland der gleiche Fleischertrag erzielt werden (vgl. Liedtke S.16).

runungen äußerst skeptisch gegenüberstanden. So dauerte es zum Teil Generationen, bis sich Maschinen am Acker durchsetzten (vgl. Liedtke S.14f).

6.2.2 Die Rolle des Kapitals

In dieser Besitzstruktur lag die Kapitalkraft der Landwirtschaft. Einige wenige reiche Adelige besaßen viel landwirtschaftlich nutzbare Fläche, die sie an Farmer verpachteten. Um die Flächen allerdings bewirtschaften zu können, mussten die Farmer wiederum lohnabhängige und besitzlose Arbeiter anstellen. Durch dieses System wurden die anderen freien Landwirte verdrängt und sie mussten wegen zu geringen Verdiensten den Grund ebenfalls an die adeligen Grundbesitzer verkaufen (vgl. Buchheim S.51).

Die Kapitalkraft der Agrarwirtschaft Englands zeigte sich auch an der Orientierung des Marktes. Durch die großen Erträge war nicht mehr die Deckung des eigenen Bedarfs der Landbevölkerung das Hauptziel, sondern die Rentabilität der agrarischen Betriebe, was sich in der
Besitzstruktur widerspiegelte (vgl. Buchheim S.51).

Im Jahr 1840 waren nur mehr 30 % der Arbeitskräfte im landwirtschaftlichen Bereich tätig, während in Österreich im Jahr 1880 noch 60 % der Arbeiter in der Landwirtschaft tätig waren (vgl. Buchheim S.52).

Zwar hatte die Agrarrevolution umfassende Umwälzungen in der Gesellschaft zur Folge, wie etwa die Änderung der Geschlechterrolle, allerdings ist die starke Zunahme der Bevölkerung und das einhergehende Angebot an Arbeitskraft für die später einsetzende Industrialisierung von großer Bedeutung (vgl. Liedtke S.19, vgl. Bialas S.79).

6.3 Die Rolle der Technik in der Industriellen Revolution

Im Verlauf der Entstehung der ersten Industriegebiete konnte man feststellen, dass sich Unternehmer bevorzugt in jenen Gebieten ansiedelten, in denen es ertragreiche Kohlevorkommen

Aufgrund der hohen Nachfrage an Kohle musste natürlich mehr gefördert werden, was bedeutete, dass die Stollen tiefer gegraben werden mussten. Durch den tieferen Bergbau drang immer mehr Grundwasser in die Minen ein, wodurch Überflutungen und Stolleneinstürze drohten. Hier wurden, wie bereits erwähnt, die Dampfpumpen und später die effizienteren Dampfmaschinen eingesetzt, um das eingedrungene Grundwasser zu entfernen.

Newcomens Maschine wurde großteils nur dort eingesetzt, wo große Kohlevorkommen lagen und viel gefördert wurde, was am enormen Energieverbrauch der Maschine lag. Am europäischen Kontinent war in Belgien die damals größte Kohleproduktion anzutreffen, die allerdings nur ein Zehntel der Menge Großbritanniens förderte und auch fast keine Dampfpumpen in Verwendung hatte (vgl. Liedtke S.31). Im Norden Frankreichs, im deutschen Saar- und Ruhrgebiet, in der Ukraine und Schlesien fanden sich zwar Kohlevorkommen, allerdings waren sie wegen der hohen Kosten für die Erschließung und der geringen Nachfrage in den entsprechenden Ländern nicht rentabel und daher nicht von Interesse (vgl. Liedtke S.30).

Abbildung 25: Kohleverbrauch der verschiedenen Dampfmaschinen, Allen S.165

Aufgetragen über die Zeitachse in Jahren, ist der Kohleverbrauch in Pfund pro Pferdestärkestunde.

Die Einheit Pferdestärke geht auf James Watt zurück, damit die Minenbesitzer bessere Vergleichswerte für die Leistung der Pumpmaschinen hatten und Watt seine Maschinen besser vermarkten konnte. Man sagte, dass eine Pferdestärke der Leistung eines Pferdes entspricht, was für die Minenbesitzer besser einschätzbar war, da vor den Maschinen häufig Pferde eingesetzt wurden, um Pumpen anzutreiben, die das Wasser entfernen sollen. Konkret definierte James Watt die Pferdestärke als Leistung, die, der pro Sekunde verrichteten Arbeit entspricht, wenn 550 Pfund eine Höhe von 1 ft gehoben werden (vgl. Müller S.51).

Auffallend ist der verhältnismäßig geringe Verbrauch der Wattschen Dampfmaschine – dargestellt in der strichlierten Linie –, die für den Betrieb nur die halbe Menge Kohle brauchte, als die von Smeaton verbesserte Newcomensche Dampfmaschine (vgl. Allen S.166f).

Zu erkennen ist auch, dass ab 1800 Modelle entwickelt wurden, die den Bedarf an Kohle wei-

Wie *James Watt* hatte *Fulton* Vorgänger, die sich mit dem Bau von Dampfschiffen auseinan-
dersetzten. Schon 1785 fuhr ein mit Dampf betriebenes Boot auf der Seine, allerdings konntete sich diese Errungenschaft aufgrund der mangelnden Wirtschaftlichkeit nicht durchsetzen. So konnte Fulton auf viel Erfahrung zurückgreifen. Er entwickelte das Schaufelrad, das die Dampfkraft in die Bewegung des Schifffes umsetzen sollte und entwarf einen Kessel, mit dem ein Dampfdruck vom 32-fachen des Atmosphärendrucks erzeugt werden konnte. Fulton hatte das Problem, dass die zur Verfügung stehenden Materialien den Belastungen nicht standhalten konnte, weshalb er seine Pläne mehrmals überarbeiten musste. 1803 gelang es ihm ein Schiff ins Wasser zu lassen, das zwar sehr langsam, aber stetig auch gegen die Strömung fuhr (vgl. Zischka S.88). Als Napoleon von dieser Entwicklung erfuhr, war er entsetzt, dass ihn sein Marinemeister nicht eher über das Dampfboot in Kenntnis setzte, da Napoleon der Meinung war, dass die Maschinen „geeignet seien, das Gesicht der Welt zu verändern (Zischka S.88)“. In Europa dauerte es bis 1812, bis auch hier Dampfschiffe fuhren, wobei auf dem Fluss Clyde das erste Dampfboot zu fahren begann (vgl. Zischka S.90).

Auch hier war die Entwicklung der Dampflokomotive kein spontanes Ereignis, sondern das Ergebnis eines längeren Entwicklungsprozesses. 1813 konstruierte Richard Trevithick einen Dampfwagen, der prinzipiell funktionierte, aber aufgrund der Unebenheiten der Wege nicht kontinuierlich betrieben werden konnte. Durch Schlaglöcher wurde der Betrieb immer wieder gestört, weshalb das Verlegen von Schienen, die eine gleichmäßigere Strecke bildeten, die einzige Option war (vgl. Zischka S.92).

Durch den Ausbau des Schienennetzes konnte die Dampflokomotive die Mobilität an Land wesentlich erhöhen, denn große Mengen an Kohle konnten ohne viel Aufwand transportiert werden. Auch mussten die Lebensmittel nicht mehr dort verbraucht werden wo sie produziert wurden, sondern konnten rasch in andere Gebiete transportiert werden ohne zu verderben. Dadurch wurde die Dampflokomotive zum wichtigsten Verkehrsmittel der Industrialisierung (vgl. Liedtke S.39).

Nicht nur in wirtschaftlicher Hinsicht hinterließ die Dampflokomotive einen gewichtigen Eindruck, sondern auch in anderen Bereichen. Aufgrund des immer größer werdenden Schienen-
netzes wurde eine Vereinheitlichung der Zeitmessung notwendig, denn aufgrund der lokal unterschiedlichen Ortszeiten wurde es schwierig einheitliche Fahrpläne zu erstellen. 1840 führte die Great Western Railway Company die London Time ein, die den ersten einheitlichen Fahrplan ermöglichte. Da sich diese Zeitbestimmung am Observatorium in Greenwich orientierte, wurde sie Greenwich Mean Time genannt. 1880 wurde die Greenwich Mean Time von der Regierung offiziell reguliert und sie bildete 1884 die Grundlage zur weltweiten Einteilung der Welt in Zeitzonen (vgl. Liedtke S.40).

6.4 Gesellschaftliche Auswirkungen der Industriellen Revolution

6.4.1 Wandel in der gesellschaftlichen Struktur

Diese Verhältnisse lösten sich während der Industrialisierung auf und man kann sagen, dass diese Umwälzung schneller vonstatten ging, je früher eine Region industrialisiert wurde. Im Russischen Reich endete diese ständisch aufgebaute Gesellschaft mit der Oktoberrevolution 1917, die hauptsächlich von den Arbeitern getragen wurde (vgl. Liedtke S.114).

Im 19. Jahrhundert nahm in den industrialisierten Gebieten die Zahl der Unternehmer, Aka-
demiker und Staatsdiener stark zu. Fachkräfte, die sich mit den komplexer werdenden wirt-
schaftlichen Strukturen beschäftigten, indem sie sich beispielsweise mit Personalverwaltung,
Buchführung, Produktverwaltung und Marketing auseinandersetzten, zählten ebenso zu den
aufstrebenden Mitgliedern der Mittelklasse (vgl. Liedtke S.115).
Den größten Teil der Gesellschaft bildeten allerdings die sogenannten Arbeiter, die zur Un-
terklasse gezählt wurden. Die Unterkasse selber ist, wie die Mittelklasse, in sich stark dif-
ferenziert, denn ungebildete Gelegenheitsarbeiter zählten ebenso dazu, wie gut ausgebildete
Facharbeiter (vgl. Liedtke S.115).
Große Existenzprobleme hatte die untere Schicht der Unterkasse, die ihre Arbeitskraft nicht
mehr anbieten konnten. Zwar war eine geringe Qualifikation kein wesentlich beeinträchti-
gender Faktor, allerdings stellten etwaige Behinderungen, Verletzungen, Krankheiten und ein
hohes Alter große Probleme dar. Es ist kein Novum der Industrialisierung, dass sich Menschen
in derartigen Situationen befinden, allerdings existierten vor der Industrialisierung Mechanis-
men, die diese Menschen auffingen, die aber durch immer stärker werdende wirtschaftliche
Orientierung zu schwinden begannen (vgl. Liedtke S.116).
In ländlichen Regionen, die dem technologischen Fortschritt mit Skepsis gegenüber standen,
versuchten die Menschen ihre gewohnte Lebenswelt zu bewahren. Zwischen 1811 und 1816
kam es in Mittel- und Nordengland immer wieder zu Attacken auf Fabriken und Zerstörung
von Maschinen. Organisierte Gruppen von Arbeiter forderten die Rücknahme der Industriali-
sierung und die Wiederherstellung des traditionellen Wirtschaftswesens, denn beispielsweise
durch den Einsatz von Landarbeitsmaschinen wurden nicht mehr so viele Arbeiter benötigt
und schlechte Wirtschaftszeiten gingen meist mit einem geringeren Bedarf an Arbeitskraft
einher, was zu hohen Arbeitslosenzahlen führte (vgl. Liedtke S.116f).

6.4.2 Migration

Die Industrialisierung erfolgte in den Ländern Europas nicht gleichzeitig, sondern zeitlich
versetzt, was zu einer Bewegung von großen Menschenmassen führte. Diese innereuropäische
und weltweite Migration des 19. und 20. Jahrhunderts wird als „proletarische Massenbewe-
gung“ bezeichnet. Erleichtert wurde diese Migration durch eine spärliche Reglementierung

In der Schweiz waren vor dem Ersten Weltkrieg etwa 17% der Arbeiter Immigranten, die mehrheitlich italienischer oder deutscher Herkunft waren. In Skandinavien wanderte die Bevölkerung des weniger entwickelten Schweden und Finnland nach Dänemark oder Norwegen aus (vgl. Liedtke S.118).

Von der Migration waren insbesonders Baugewerbe, Eisenbahnbau, Kanalbau, Straßenbau, Metall-, Kohle- und Textilindustrie betroffen. Für das Gelingen infrastruktureller Großprojekte waren Migranten wichtig, um den Bedarf an Arbeitskraft zu decken. Vor allem die Eisenbahn spielte eine wichtige Rolle, denn durch sie konnten die Menschen schneller und leichter große Strecken überwinden (vgl. Liedtke S.118f).

Der Großteil der Immigranten in industrielle Gegend stammte aus agrarisch geprägten Regionen, in denen die Mechanisierung zu einem geringeren Bedarf an Arbeitern führte. Saison bedingt benötigte die Landwirtschaft gerade zur Erntezeit allerdings wieder mehr Arbeitskräfte. Es hat sich gezeigt, dass Migranten in den Industriesektor zu 90% männlich waren, während Saisonarbeiter im Agrarsektor fast zur Hälfte Frauen waren (vgl. Liedtke S.119).

Als Folge der Migration wurde schon vor dem Ersten Weltkrieg eine Regulierung des Migrationsstromes angestrebt. Es bildeten sich Bewegungen, die eine zunehmende Überfremdung eindämmen wollten und nach dem Ersten Weltkrieg begannen zuvor migrationsfreundliche Staaten, wie die USA oder die skandinavischen Länder, die Zuwanderung stärker zu regulieren (vgl. Liedtke S.119).

Durch die Migration vergrößerten sich bestehende Städte und es wurden neue Siedlungen gegründet. Handels- und Residenzstädte verloren an Bedeutung, sofern sich dort keine Industrie ansiedelte. Der eintretende Urbanisierungsprozess bedeutete auch, dass traditionelle Mechanismen sozialer Kontrolle der ländlichen Gesellschaft außer Kraft gesetzt wurden, was einen wesentlich individualisierten Lebensstil ermöglichte (vgl. Liedtke S.120).
6.4.3 Wohn- und Arbeitsverhältnisse

Die schlechten Arbeitsbedingungen und die schlechte Wohnsituation stellen die Folgen der Industriellen Revolution dar, die am meisten negativ bewertet werden. Dabei muss bedacht werden, dass die Industrielle Revolution den Alltag der Bevölkerung grundlegend verändert hat. Vor der Industriellen Revolution war der typische Arbeitstag von Faktoren wie Jahres-

Neben dem Hohen Unfallrisiko waren die Arbeiter schutzlos schädlichen Stoffen ausgesetzt. Die Arbeiter in Bergwerken atmeten Kohlestaub ein und in Textilfabriken setzte sich feiner Baumwollstaub durch das Einatmen in der Lunge ab, was zu erheblichen Gesundheitsschäden führte. Aber nicht nur die Arbeiter waren schutzlos schädlichen Stoffen ausgesetzt, sondern auch die Umwelt, denn der Begriff „Umweltschutz“ bezeichnete in erster Linie den Schutz von Ressourcen, und nicht das Erhalten von Ökosystemen (vgl. Liedtke S.123).

Neben Erwachsenen wurden für die Arbeit in den Betrieben eingesetzt auch Kinder eingesetzt. Die Kinderarbeit stand an der Tagesordnung, denn sie waren billiger, leichter zu disziplinieren und boten andere Qualitäten. So wurden Kinder in Bergwerken eingesetzt, da sie in kleineren

Die eben erwähnte Arbeits- und Wohnsituation, die Gefahren- und Gesundheitssituation sowie die Kinderarbeit stellen für uns heute haarsträubende und unvorstellbare Umstände dar, die allerdings zur Zeit der Industriellen Revolution alltäglich waren. Man konnte sich damals keine andere Möglichkeit vorstellen, zu arbeiten und Geld zu verdienen (vgl. Liedtke S.123).

6.4.4 Gründung der ersten Gewerkschaften

Gewerkschaften haben in allen industriell geprägten Gesellschaften die selbe Aufgabe, darin besteht sowohl die Lohnsituation, als auch die Arbeitsbedingungen der Arbeiter zu verbessern. Durch die sozialen Missstände, vor allem in England, reagierten viele Arbeiter mit Zorn und Aggression, was zur Zerstörung von Maschinen führte. Es fanden sich aber bald Personen, denen klar war, dass die Zerstörung kein sinnvolles Mittel zur Durchsetzung der eigenen Interessen ist, sondern stattdessen auf politische Aktivität setzten. 1799 wurde in Großbritannien ein Koalitionsverbot erlassen, was es den Arbeitern erschwerte sich untereinander auszutauschen und gemeinsam Interessen zu vertreten. Erst 1824 gelang eine Lockerung dieses Verbotes und es entstand die Chartistenbewegung, die ihren Namen nach der, von Arbeitern 1834 verfassten Charta der Menschenrechte, erhielt (vgl. Rudolph S.54f).

Forderungen der Chartisten waren unter anderem die Festsetzung der maximalen Dauer eines Arbeitstages, allgemeines Wahlrecht, jährlicher Parlamentswechsel und Abbau von Kornzöllen. Diese Interessen wurden von einem großen Teil der linksliberalen Bürgerlichen unterstützt, was eine Durchsetzung wesentlich erleichterte (vgl. Rudolph S.55).

Zunächst waren die gegründeten Arbeitervertretungen unpoltisch und an einer Verbesserung der Arbeitsbedingungen interessiert. Um die Jahrhundertwende zum 20. Jahrhundert ging aus dem Zusammenschluss der Fabian Society, der unabhängigen Arbeiterpartei und des Gewerkschafts- und Genossenschaftswesens die Labour-Party hervor, die den verlängerten

Fritz Rudolph formuliert das Ziel der Gewerkschaften Englands folgendermaßen: „Man wird also sagen dürfen, dass die englischen Gewerkschaften indirekt und direkt eine schrittweise Veränderung von Wirtschaft und Gesellschaft anstreben, ohne jedoch das gesamtpolitische System selbst in Frage zu stellen (Rudolph S.55)“.

Zwar wollten die Gewerkschaften Amerikas politisch neutral bleiben und keine Veränderungen der Gesellschaft bewirken, allerdings stellte sich heraus, dass ihre Tätigkeit sehr wohl Einfluss auf die Gesellschaft hatte. Angemerkt sei, dass Rudolph nicht weiter darauf eingeht (vgl. Rudolph S.56).

In Frankreich spielten die Gewerkschaften wieder eine andere Rolle, die zum Teil auf den Prinzipien der französischen Revolution fußt, zu deren Grundsätzen die Arbeits- und Gewerbefreiheit, die persönliche Vertragsfreiheit und das Koalitionsverbot gehören (vgl. Rudolph S.56).

In den Jahren 1848 und 1871 versuchten die französischen Arbeiter den Staat zu erobern und so die wirtschaftliche und gesellschaftliche Struktur zu verändern. Da die Erfahrung gemacht wurde, dass die rechtliche Gleichheit der Bevölkerung kein Garant gegen die real existierende Ungleichheit war, erwarteten die Gewerkschaften Frankreichs keine Veränderungen durch politische Parteien. Daraus entstand der Gedanke, dass die Arbeiter selber Träger revolutionärer Bestrebungen waren, weshalb die Zielsetzung der Gewerkschaften als revolutionär bezeichnet
wurden. Wie in Amerika wollten die Gewerkschaften in Frankreich politisch neutral bleiben (vgl. Rudolph S.56).
Durch die gesellschaftlichen Veränderungen in der frühindustriellen Zeit entwickelte sich eine frühe Form des Sozialismus, deren Ziel es war, die Lebensbedingungen der Arbeiter zu verbessern (vgl. Liedtke S.141f). In den 1860er Jahren waren die Sozialisten zu einer bedeutenden gesellschaftlichen Formation angewachsen, deren Anhänger hauptsächlich in der Industriearbeiterschaft zu finden waren (vgl. Liedtke S.143).

6.4.5 Die Wissenschaft ändert sich
Es wurde bereits die Wichtigkeit der Technologie und deren fortschreitende Entwicklungen skizziert. Einerseits durch den gewachsenen Arbeitsmarkt für Maschinen und andererseits durch die immer höher werdenden Ansprüche an die Maschinen änderte sich im Zuge der Industrialisierung die Rolle der Wissenschaft und der wissenschaftliche Betrieb.

Man kann sagen, dass die Wissenschaft nicht professionalisiert war. Forschung wurde von einzelnen Personen betrieben, die untereinander nur sehr wenig Kontakt hatten und die gleichzeitig in mehreren Teilbereichen der Wissenschaft tätig waren. Durch die mangelnde Kommunikation untereinander waren die Forscher nicht gut über die Erkenntnisse ihrer Kollegen informiert und waren nicht auf dem Neuesten Stand der Forschung. Man sprach dabei von „*Cultivators of Science*“, nicht aber von „*Scientists*“, wenn von Personen die Rede war, die Wissenschaft betrieben (vgl. Bialas S.87).

Durch wirtschaftlichen Fortschritt begann eine Art wissenschaftliche Bearbeitung der technischen Problemstellen, die meist von Personen ausging, die sich die notwendigen Kenntnisse selbst erarbeiteten und zugleich fähig waren, eine wissenschaftliche Forschung zu entwickeln (vgl. Bialas S.88).

1664, also knapp 100 Jahre vor der Patentierung der Wattschen Dampfmaschine, wurde aus der Notwendigkeit der wissenschaftlichen Kommunikation die *Royal Society* gegründet, deren Ziel es war, naturwissenschaftliche Forschung und die Entwicklung von Anwendungen mit praktischem Nutzen voranzutreiben, was aber aufgrund einer fehlenden Finanzierung und der unzufriedenstellenden Tätigkeit der Mitglieder erschwert wurde (vgl. Bialas S.89).

Die Royal Society erfuhr ebenfalls eine Reform, da die Aufnahme der Mitglieder von der wissenschaftlichen Qualifikation abhängig gemacht wurde. So fanden sich 1821 von den 21 Mitgliedern des Rates der Royal Society 12 Wissenschaftler, was den Wissenschaftlern erleichterte, eigenständig über Prioritäten und Zielsetzungen zu bestimmen (vgl. Bialas S.91).

Es ist zu erkennen, dass sich die Industrialisierung ohne viel Zutun der Royal Society vollzog, allerdings hinterließ die Industrialisierung ihre Spuren in den Wissenschaften. Wissenschaftliche Untersuchungen in technischen Fragestellungen übernahmen meist kleinere, unabhängige Gruppen, wie zum Beispiel die 1799 gegründete Royal Institution (vgl. Bialas S.91).

6.4.6 Industrialisierung in anderen Ländern

Die Dampfmaschine ist nicht der einzige Grund für das Auftreten der industriellen Revolution und der einhergehenden Industrialisierung Großbritanniens, stellt aber einen wichtigen Grund für deren Voranschreiten dar. Dass die Dampfmaschine ausgerechnet in Großbritannien entwickelt wurde, liegt einerseits am wissenschaftlichen Fortschritt und der wissenschaftlichen Tätigkeiten, aber auch daran, dass es eine Notwendigkeit an der Technik gab. Dieser Bedarf ermöglichte Newcomen die notwendige Finanzierung der Forschung und die Entwicklung von Modellen.

Zwar hatte Belgien die größte Kohleproduktion des europäischen Festlandes, förderte aber nur 13 Prozent der Kohlemenge Großbritanniens (vgl. Allen S.163).

Aufgrund des Vorhandenseins einer Infrastruktur und von Betrieben, die jenen im industriali-

Nach der Ausgliederung Belgiens aus Frankreich war die Industrialisierung Belgiens so weit fortgeschritten, dass sie nicht mehr rückgängig gemacht werden konnte. Durch eine hohe Nachfrage an Maschinen und Metallwaren aus Deutschland verlagerte sich die Produktion Belgiens auf diese Waren, was bedeutete, dass der textile Industriezweig sehr stark an Bedeutung verlor. Durch hohe Investitionen besaß Belgien das dichteste Straßen- und Binnenschiffsnetz und war durch Eisenbahntrecken sehr gut erschlossen (vgl. Buchheim S.92).

Neben Belgien war auch die Schweiz ein früh industrialisiertes Land, obwohl die geografischen Bedingungen der Schweiz nicht so gut waren wie in Belgien (vgl. Buchheim S.92f). Eingriffe des Staates waren hier von enormer Wichtigkeit. Die Schweiz war föderalistisch aufgebaut, weshalb es sehr wichtig war einheitliche Rahmenbedingungen für die Wirtschaft zu schaffen, die durch eine Verfassungsrevision 1874 ermöglicht wurden. Neben der Pressefreiheit, Meinungsfreiheit und Versammlungsfreiheit, was die Gründung von Gewerkschaften ermöglichte, wurden Binnenzölle zwischen den einzelnen Kantonen, ein einheitliches Maß- und Gewichtssystem, sowie ein gesamtschweizerisches Postnetz und der Schweizer Franken als Einheitswährung eingeführt. Durch die Aufhebung von Partikularrechten der einzelnen Kantone konnte der Staat effektiv in die Wirtschaft eingreifen, was er jedoch vorsichtig machte. Die heute noch existierenden politischen Unterschiede der einzelnen Kantone fußen darauf, dass der Staat mehr in wirtschaftliche Faktoren eingriff (vgl. Liedtke S.137f).

Anzumerken ist, dass es auch in Frankreich im 18. Jahrhundert Strukturen gab, die eine Indus-
Diplomarbeit

Lechner Philipp

In der Zeit um 1790 umfasste die Bevölkerung Amerikas etwa vier Millionen Menschen, wobei sich darunter etwa 700 000 Sklaven befanden. Anders als in europäischen Staaten war die Wirtschaft sehr stark vom Agrarsektor geprägt, denn ungefähr 80% der Bevölkerung arbeitete im landwirtschaftlichen Bereich (vgl. Buchheim S.105).

Anfänglich wurden aufgrund der geschichtlichen Verknüpfung in Amerika, britische Technologien gut angenommen und imitiert, wodurch Amerika durch weitere Entwicklungen zur produktivsten Wirtschaft der Welt wurde (vgl. Buchheim S.213).

Da der Bedarf an Wohnhäusern durch die Bevölkerungszunahme in Amerika stieg und diese Häuser schnell und einfach errichtet werden mussten, stieg die Nachfrage an einheitlich dimensionierten Bauteilen. Durch diese Entwicklung ermöglichte die amerikanische Technologie eine standardisierte Massenproduktion, die eine präzise Reproduzierbarkeit erforderte. Später konnten nicht nur Häuser, sondern auch Maschinen, schneller zusammengesetzt wer-

Eine russische Delegation führte den Japanern 1853 eine Dampfmaschine vor, was die technologische Rückständigkeit Japans zeigte. War die Dampfmaschine in Europa schon beinahe 100 Jahre im Einsatz, stellte sie für die bis dato feudalistisch organisierten Japaner ein Novum dar, die diese neue Technologie gerne aufnahmen und schnell nachbauen konnten (vgl. Liedtke S.156).

7 Bezug zum Unterricht

7.1 Sekundarstufe I

Anhand der Dampfmaschine von James Watt und der damit verbundenen Industriellen Revolution kann im Unterricht ein Bezug zur Rolle der Technik in der Gesellschaft hergestellt werden.

7.2 Sekundarstufe II

In der Oberstufe können die Dampfmaschinen und deren weitere Auswirkungen können genauer behandelt werden. Da der Physikunterricht an der Erfüllung des allgemeinen Bildungsauftrages der Schule mitwirkt, finden sich folgende – für die Behandlung der Dampfmaschine relevante – Bildungsziele. Der Lehrplan spricht von einem „verantwortungsbewussten Umgang mit der Umwelt (Lehrplan Sek.II S.1)“, vom Erwerb einer rationalen Weltsicht um zu beurteilen, „welche Beiträge zu persönlichen und gesellschaftlichen Entscheidungen physikalische Methoden liefern (Lehrplan Sek.II S.1)“.

Die zu erwerbende Kompetenz, dass „Physik als Grundlage der Technik [zu] verstehen (Lehrplan Sek.II S.1)“ ist, kann mit diesem behandelten Thema sehr gut vermittelt werden.
„Mensch und Gesellschaft (Lehrplan Sek.II S.1)“ ist ein eigener Teilbereich im Lehrplan, dem folgende Kompetenzen zugeordnet werden: „Physik als Grundlagenwissenschaft (Welternkenntnis) und als angewandte Wissenschaft (Weltgestaltung) verstehen; Verantwortung für den nachhaltigen Umgang mit materiellen und energetischen Ressourcen übernehmen; ethische Maßstäbe in der gesellschaftsrelevanten Umsetzung physikalischer Erkenntnisse beachten; rationale Kritikfähigkeit bei gesellschaftlichen Problemen [...] entwickeln (Lehrplan Sek.II S.1)“. Dementsprechend ist unter den didaktischen Grundsätzen eine Orientierung der Themenwahl im Bereich „Physik und Gesellschaft (Lehrplan Sek.II S.2)“ zu finden, in dem „Verantwortungsbewusstes gesellschaftspolitisches Handeln (Lehrplan Sek.II S.2)“ beschrieben ist.

Laut Lehrplan kann eine Einbettung der Behandlung der Dampfmaschine kann, in der 5. und 6. Klasse erfolgen, denn „die Schülerinnen und Schüler sollen folgende physikalische Bildungsziele erreichen: [...] im Rahmen der Wärmelehre Zustände und Zustandsänderungen der Materie mit Hilfe des Teilchenkonzepts erklären können, den nachhaltigen Umgang mit Energie beherrschen und bei angestrebter größerer Erklärungstiefe die Bedeutung der thermodynamischen Hauptsätze verstehen (Lehrplan Sek.II S.3)“.
8 Zusammenfassung

Es wurde im Rahmen dieser Arbeit auch gezeigt, dass technischer Fortschritt nicht immer nur positive Folgen mit sich bringt. Zwar erhöhten die ausgebaute Infrastruktur, die Dampfschifffahrt und die Dampflokomotiven die Mobilität und der in Fabriken eingetretene leichtere Produktionsprozess den Lebensstandard der Menschen, allerdings waren schlechte Arbeits- und Wohnungsbedingungen, eine unzureichende Gesundheitsversorgung und eine kaum vorhandene soziale Absicherung, große negative Folgen.
Da die Arbeiter mit dieser Situation nicht zufrieden waren, sorgten Reformen über die Jahre zum Entstehen von Gewerkschaften und in weiterer Folge zu gesetzlichen Bestimmungen, die die Arbeitsbedingungen verbessern und einheitlich regeln sollten.
Die spürbare Verbreitung der Industriellen Revolution in andere Nationen führte dazu, dass die betroffenen Staaten stärker miteinander in Beziehung traten und intensiveren Kontakt zueinander hatten.
9 Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Abbildungskennung</th>
<th>Beschreibung</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Heronsball</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Mechanismus zur Öffnung von Tempeltüren durch Dampfkraft</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Skizze zur Berechnung der Volumenänderungsarbeit</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>Skizze zur Berechnung der Volumenänderungsarbeit mit äußeren Druck</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>Verrichtete Arbeit über unterschiedliche Wege</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>Darstellung des Verdampfungsvorgang in einem, mit beweglichem Kolben verschlossenen, Zylinder</td>
<td>37</td>
</tr>
<tr>
<td>7</td>
<td>Darstellung der Temperaturänderung bei Verdampfung</td>
<td>38</td>
</tr>
<tr>
<td>8</td>
<td>Darstellung des Clausius-Rankine-Prozesses</td>
<td>39</td>
</tr>
<tr>
<td>9</td>
<td>Beispielhafte Darstellung eines Energieflussdiagrammes</td>
<td>41</td>
</tr>
<tr>
<td>10</td>
<td>Worcesters Fontänen</td>
<td>43</td>
</tr>
<tr>
<td>11</td>
<td>Somersets Pumpmaschine</td>
<td>44</td>
</tr>
<tr>
<td>12</td>
<td>Modell für Huygens Schießpulvermaschine</td>
<td>46</td>
</tr>
<tr>
<td>13</td>
<td>Saverys Pumpmaschine</td>
<td>48</td>
</tr>
<tr>
<td>14</td>
<td>Modell für die verbesserte Pumpmaschine mit Kühlung des Zylinders durch Wasser</td>
<td>50</td>
</tr>
<tr>
<td>15</td>
<td>Papinscher Topf</td>
<td>51</td>
</tr>
<tr>
<td>16</td>
<td>Aufbau der Papinschen Dampfmaschine</td>
<td>52</td>
</tr>
<tr>
<td>17</td>
<td>Schematischer Aufbau einer Feuermaschine von Thomas Newcomen</td>
<td>55</td>
</tr>
<tr>
<td>18</td>
<td>Schematischer Aufbau der Newcomenschen Feuermaschine</td>
<td>57</td>
</tr>
<tr>
<td>19</td>
<td>Aufbau eines Boilers für eine Dampfmaschine</td>
<td>58</td>
</tr>
<tr>
<td>20</td>
<td>Watts Modell der Newcomenschen Dampfmaschine an der Universität von Glasgow</td>
<td>63</td>
</tr>
<tr>
<td>21</td>
<td>Experimenteller Aufbau zur Optimierung der Dampfmaschinen</td>
<td>66</td>
</tr>
<tr>
<td>22</td>
<td>Watts Dampfmaschine von 1774</td>
<td>69</td>
</tr>
<tr>
<td>23</td>
<td>Dampfmaschine mit Planetengetriebe zur Erzeugung einer Drehbewegung</td>
<td>73</td>
</tr>
<tr>
<td>24</td>
<td>Druckverteilung im Zylinder</td>
<td>75</td>
</tr>
<tr>
<td>25</td>
<td>Kohleverbrauch der verschiedenen Dampfmaschinen</td>
<td>85</td>
</tr>
</tbody>
</table>
10 Quellenverzeichnis

10.1 Literatur

- **Allen:**

- **Atkins:**

- **Baehr:**

- **Barth:**
 Barth, F. (1905). Die Dampfmaschine. Leipzig: G. J. Göschen

- **Bialas:**

- **Breidbach:**

- **Buchheim:**

- **Butschek:**

- **Diamond:**
• **Dickinson:**

• **Eckoldt:**

• **Ernst:**

• **Hart:**

• **Jabornegg/Resch:**

• **Landes:**

• **Liedtke:**

• **Matschoss:**

• **Mayer:**
 Mayer, R. J. von. (1842). Bemerkungen über die Kräfte der unbelebten Natur. In. Anna-

• **Nolting:**
• Müller:

• Päsler:

• Rudolph:

• Stephan/Mayinger:

• Stierstadt:

• Thurston:

• Zischka

10.2 Internetquellen

• Lehrplan Sek I:
Lehrplan Physik Sekundarstufe I - gesichtet am 1. Juni 2015

• Lehrplan Sek II:
Lehrplan Physik Sekundarstufe II - gesichtet am 1. Juni 2015
• Leifi:
 http://www.leifiphysik.de/themenbereiche/arbeit-energie-und-leistung
 - gesichtet am 12. Mai 2015