Orthogonality preserving transformations of Hilbert Grassmannians

Mark Pankov

Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria

Abstract

Let H be a complex Hilbert space and let $G_k(H)$ be the Grassmannian formed by k-dimensional subspaces of H. Suppose that $\dim H > 2k$ and f is an orthogonality preserving injective transformation of $G_k(H)$, i.e. for any orthogonal $X, Y \in G_k(H)$ the images $f(X), f(Y)$ are orthogonal. Furthermore, if $\dim H = n$ is finite, then $n = mk + i$ for some integers $m \geq 2$ and $i \in \{0, 1, \ldots, k - 1\}$ (for $i = 0$ we have $m \geq 3$). We show that f is a bijection induced by a unitary or anti-unitary operator if $i \in \{0, 1, 2, 3\}$ or $m \geq i + 1 \geq 5$; in particular, the statement holds for $k \in \{1, 2, 3, 4\}$ and, if $k \geq 5$, then there are precisely $(k - 4)(k + 1)/2$ values of n such that the above condition is not satisfied.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

By Gleason’s theorem [2], the set of pure states of a quantum mechanical system can be identified with the set of rank-one projections, i.e. the set of rays in a complex Hilbert space. Wigner’s theorem [12] describes symmetries of quantum mechanical systems, it states that every bijective transformation of the set of pure states preserving the tran-
sition probability (the trace of the composition of two projections or, equivalently, the angle between two rays) is induced by a unitary or anti-unitary operator. Also, there is a non-bijective version of this result concerning linear and conjugate-linear isometries. Various kinds of Wigner-type theorems can be found, for example, in [7]; some of them are formulated in terms of orthogonality preserving transformations.

Let H be a complex Hilbert space. For every positive integer $k < \dim H$ we denote by $\mathcal{G}_k(H)$ the Grassmannian formed by k-dimensional subspaces of H. This Grassmannian can be naturally identified with the set of rank-k projections. In the case when $\dim H \geq 2k$, two k-dimensional subspaces are orthogonal if and only if the composition of the corresponding projections is zero.

Suppose that $\dim H \geq 3$. Then the bijective version of Wigner’s theorem is a consequence of the following Uhlhorn’s observation [10]: every bijective transformation of $\mathcal{G}_1(H)$ preserving the orthogonality relation in both directions is induced by a unitary or anti-unitary operator. In fact, the latter statement follows fairly easily from the Fundamental Theorem of Projective Geometry ([7, Proposition 4.8] or [11, Theorem 4.29]). See [8] for a more general approach to orthogonality preserving transformations.

Uhlhorn’s observation was extended on other Grassmannians by Győry [3] and Šemrl [9]: if $\dim H > 2k$, then every bijective transformation of $\mathcal{G}_k(H)$ preserving the orthogonality relation in both directions is induced by a unitary or anti-unitary operator. A simple example shows that the statement fails for $\dim H = 2k$. If H is infinite-dimensional, then the same holds for orthogonality preserving (in both directions) bijective transformations of the Grassmannian formed by subspaces whose dimension and codimension both are infinite [9]. Győry–Šemrl’s theorem is used to study transformations preserving the gap metric [1] and commutativity preserving transformations [4,6]. The assumption of surjectivity cannot be omitted. It was noted in [9] that for the case when H is infinite-dimensional there are non-surjective transformations of $\mathcal{G}_k(H)$ which are not induced by linear or conjugate-linear isometries and preserve the orthogonality relation in both directions. If H is finite-dimensional and $\dim H > 2k$, then such transformations do not exist, i.e. every transformation of $\mathcal{G}_k(H)$ preserving the orthogonality relation in both directions is a bijection induced by a unitary or anti-unitary operator [5]. In this note, we obtain an analogue of the latter result for injective transformations under the assumption that the orthogonality relation is preserved exactly in one direction.

2. Result

Suppose that H is finite-dimensional. Let k be a positive integer such that $\dim H > 2k$. Then

$$\dim H = mk + i$$

for some integers $m \geq 2$ and $i \in \{0, 1, \ldots, k - 1\}$. Note that $m \geq 3$ if $i = 0$.

Theorem 1. Suppose that one of the following conditions is satisfied:

• \(i \in \{0, 1, 2, 3\} \);
• \(i \geq 4 \) and \(m \geq i + 1 \).

Then every injective transformation \(f \) of \(G_k(H) \) preserving the orthogonality relation, i.e. for any orthogonal \(X, Y \in G_k(H) \) the images \(f(X), f(Y) \) are orthogonal, is a bijection induced by a unitary or anti-unitary operator on \(H \).

Theorem 1 shows that every injective transformation of \(G_k(H) \) preserving the orthogonality relation is a bijection induced by a unitary or anti-unitary operator if

• \(k \in \{1, 2, 3, 4\} \) or
• \(k \geq 5 \) and \(\dim H \) is sufficiently large, for example, if \(\dim H \geq k^2 \).

For \(k \geq 5 \) there are precisely
\[
3 + 4 + \cdots + (k - 2) = (k - 4)(k + 1)/2
\]
values of \(\dim H \) such that the condition of Theorem 1 does not hold (for every \(i \in \{4, \ldots, k - 1\} \) the corresponding values of \(m \) are \(2, 3, \ldots, i \)).

If \(k = 1 \), then Theorem 1 is a simple consequence of the Fundamental Theorem of Projective Geometry [7, Remark 49].

3. Proof of Theorem 1

First of all, we present some facts which will be exploited to prove Theorem 1. Two \(k \)-dimensional subspaces of \(H \) are called adjacent if their intersection is \((k - 1) \)-dimensional or, equivalently, their sum is \((k + 1) \)-dimensional. Any two distinct 1-dimensional subspaces of \(H \) are adjacent. Similarly, if \(\dim H = n \) is finite, then any two distinct \((n - 1) \)-dimensional subspaces of \(H \) are adjacent. If \(X, Y \in G_k(H) \), then the distance \(d(X, Y) \) between \(X \) and \(Y \) is defined as the smallest integer \(m \) such that there is a sequence
\[
X = X_0, X_1, \ldots, X_m = Y,
\]
where \(X_{j-1}, X_j \) are adjacent elements of \(G_k(H) \) for every \(j \in \{1, \ldots, m\} \). It is well known that
\[
d(X, Y) = k - \dim(X \cap Y) = \dim(X + Y) - k,
\]
see, for example, [7, Section 2.3].

Theorem 2 ([5]). Suppose that \(\dim H > 2k > 2 \) and \(f \) is a transformation of \(G_k(H) \) satisfying the following conditions:
• f is adjacency preserving, i.e. for any adjacent $X, Y \in G_k(H)$ the images $f(X), f(Y)$ are adjacent;
• f is orthogonality preserving.

Then f is induced by a linear or a conjugate-linear isometry.

Also, we will need the following result mentioned in the Introduction.

Theorem 3 ([5]). If the dimension of H is finite and greater than $2k$, then every transformation of $G_k(H)$ preserving the orthogonality relation in both directions is a bijection induced by a unitary or anti-unitary operator on H.

Suppose that $\dim H = n$ is finite. It was noted above that Theorem 1 holds for $k = 1$. We assume that $k \geq 2$ and

$$n = mk + i > 2k,$$

where $m \geq 2$ and $i \in \{0, 1, \ldots, k - 1\}$. Let f be an injective transformation of $G_k(H)$ preserving the orthogonality relation.

3.1. The case $i = 0$

In this case, we have $m \geq 3$. Suppose that $f(X), f(Y)$ are orthogonal for some $X, Y \in G_k(H)$; we show that X, Y are orthogonal.

Observe that

$$\dim (X^\perp \cap Y^\perp) \geq n - 2k = (m - 2)k.$$

In the case when $m \geq 4$, there are mutually orthogonal k-dimensional subspaces

$$Z_1, \ldots, Z_{m - 2} \subset X^\perp \cap Y^\perp;$$

if $m = 3$, then we take any k-dimensional subspace Z_1 in $X^\perp \cap Y^\perp$. Since f is orthogonality preserving, each $f(Z_j)$ is orthogonal to $f(X) + f(Y)$. By our assumption, $f(X)$ and $f(Y)$ are orthogonal. The dimension of H is equal to mk and H is the orthogonal sum of

$$f(Z_1), \ldots, f(Z_{m - 2}), f(X), f(Y).$$

The dimension of X^\perp is equal to $n - k = (m - 1)k$, i.e. X^\perp contains the unique k-dimensional subspace Z orthogonal to all Z_j and H is the orthogonal sum of

$$f(Z_1), \ldots, f(Z_{m - 2}), f(X), f(Z).$$
Therefore, \(f(Y) = f(Z) \). Since \(f \) is injective, we have \(Y = Z \), i.e. \(Y \) is orthogonal to \(X \).

So, \(f \) is orthogonality preserving in both directions and Theorem 3 gives the claim.

3.2. The case \(i \in \{1, 2, 3\} \)

It is sufficient to show that \(f \) is adjacency preserving and to apply Theorem 2.

The general case can be reduced to the case when \(m = 2 \). If \(X, Y \in \mathcal{G}_k(H) \) are adjacent and \(m \geq 3 \), then we take mutually orthogonal \(X_1, \ldots, X_{m-2} \in \mathcal{G}_k(H) \) whose sum is orthogonal to \(X + Y \) (for \(m = 3 \) we choose any \(X_1 \in \mathcal{G}_k(H) \) orthogonal to \(X + Y \)). Consider the \((2k + i)\)-dimensional subspaces \(M \) and \(N \) which are the orthogonal complements of

\[
X_1 + \cdots + X_{m-2} \quad \text{and} \quad f(X_1) + \cdots + f(X_{m-2}),
\]

respectively. Then \(f \) transfers any \(k \)-dimensional subspace of \(M \) to a \(k \)-dimensional subspace of \(N \), i.e. it induces an orthogonality preserving injection of \(\mathcal{G}_k(M) \) to \(\mathcal{G}_k(N) \).

From this moment, we assume that \(m = 2 \), i.e. \(n = 2k + i \) with \(i \in \{1, 2, 3\} \). Let \(\mathcal{G} \) be the set of all subspaces \(U \subset H \) satisfying

\[
k < \dim U \leq k + i.
\]

For every \(U \in \mathcal{G} \) we define \(f'(U) \) as the smallest subspace containing \(f(Y) \) for all \(k \)-dimensional subspaces \(Y \subset U \). Since \(f \) is injective, \(\dim f'(U) > k \). If \(Z \) is a \(k \)-dimensional subspace orthogonal to \(U \) (the inequality \(\dim U^\perp \geq k \) guarantees that such a subspace exists), then \(f'(U) \) is orthogonal to \(f(Z) \) which implies that \(\dim f'(U) \leq k + i \) and \(f'(U) \) belongs to \(\mathcal{G} \). So, \(f' \) is a transformation of \(\mathcal{G} \) and for every \(U \in \mathcal{G} \) we have

\[
f(\mathcal{G}_k(U)) \subset \mathcal{G}_k(f'(U)).
\]

If \(U, S \in \mathcal{G} \) are orthogonal, then the same holds for \(f'(U), f'(S) \).

The cases \(i = 1 \) and \(i = 2 \) are simple.

Lemma 1. If \(i \in \{1, 2\} \), then \(f \) is adjacency preserving.

Proof. If \(i = 1 \), then \(\mathcal{G} = \mathcal{G}_{k+1}(H) \) and we have

\[
f'(\mathcal{G}_{k+1}(H)) \subset \mathcal{G}_{k+1}(H)
\]

which implies that \(f \) is adjacency preserving (since \(X, Y \in \mathcal{G}_k(H) \) are adjacent if and only if \(X + Y \in \mathcal{G}_{k+1}(H) \)).

Let \(i = 2 \). Then

\[
\mathcal{G} = \mathcal{G}_{k+1}(H) \cup \mathcal{G}_{k+2}(H).
\]
If \(f \) is not adjacency preserving, then there is \(U \in \mathcal{G}_{k+1}(H) \) such that \(f'(U) \) is an element of \(\mathcal{G}_{k+2}(H) \). Note that \(U^{\perp} \) belongs to \(\mathcal{G}_{k+1}(H) \) and \(f'(U), f'(U^{\perp}) \) are orthogonal. This implies that the dimension of \(f'(U^{\perp}) \) is not greater than \(k \) which is impossible. \(\Box \)

The case \(i = 3 \) is more complicated and the proof will be given in several steps. In this case, \(\mathcal{G} \) is the union of \(\mathcal{G}_{k+1}(H), \mathcal{G}_{k+2}(H) \) and \(\mathcal{G}_{k+3}(H) \). It is sufficient to establish that

\[
f'(\mathcal{G}_{k+2}(H)) \subset \mathcal{G}_{k+2}(H).
\]

Indeed, if \(U \in \mathcal{G}_{k+1}(H) \), then \(U^{\perp} \) belongs to \(\mathcal{G}_{k+2}(H) \) and the latter inclusion shows that the same holds for \(f'(U^{\perp}) \). Since \(f'(U) \) and \(f'(U^{\perp}) \) are orthogonal, the dimension of \(f'(U) \) is not greater than \(k + 1 \) which means that \(f'(U) \in \mathcal{G}_{k+1}(H) \). So, \(f' \) transfers \(\mathcal{G}_{k+1}(H) \) to itself and \(f \) is adjacency preserving.

Our first step is to show that

\[
f'(\mathcal{G}_{k+2}(H)) \subset \mathcal{G}_{k+1}(H) \cup \mathcal{G}_{k+2}(H).
\]

If \(U \in \mathcal{G}_{k+2}(H) \), then \(U^{\perp} \in \mathcal{G}_{k+1}(H) \) and \(f'(U), f'(U^{\perp}) \) are orthogonal. In the case when \(f'(U) \) belongs to \(\mathcal{G}_{k+3}(H) \), the dimension of \(f'(U^{\perp}) \) is not greater than \(k \), a contradiction.

Two distinct elements of \(\mathcal{G}_{k+1}(H) \cup \mathcal{G}_{k+2}(H) \) are said to be \('\)-adjacent if one of the following possibilities is realized:

- these are adjacent elements of \(\mathcal{G}_{k+2}(H) \);
- one of them belongs to \(\mathcal{G}_{k+2}(H) \), the other to \(\mathcal{G}_{k+1}(H) \) and the \((k+1)\)-dimensional subspace is contained in the \((k+2)\)-dimensional.

Lemma 2. If \(U, V \in \mathcal{G}_{k+2}(H) \) are adjacent, then \(f'(U), f'(V) \) are \('\)-adjacent or \(f'(U) = f'(V) \).

Proof. The subspace \(U \cap V \) is \((k+1)\)-dimensional and contains infinitely many \(k \)-dimensional subspaces. Therefore, the subspace \(f'(U) \cap f'(V) \) contains infinitely many \(k \)-dimensional subspaces which is possible only in the case when \(f'(U), f'(V) \) are \('\)-adjacent or coincident. \(\Box \)

The following lemma completes the proof for the case \(i = 3 \).

Lemma 3. \(f'(U) \in \mathcal{G}_{k+2}(H) \) for every \(U \in \mathcal{G}_{k+2}(H) \).

Proof. Recall that two subspaces \(U, V \subset H \) are called compatible if there are subspaces \(U' \subset U \) and \(V' \subset V \) such that \(U \cap V, U', V' \) are mutually orthogonal and

\[
U = U' + (U \cap V), \quad V = V' + (U \cap V).
\]
Let U and V be distinct $(k + 2)$-dimensional subspaces of H. Then $\dim(U \cap V) \geq 1$. The following two conditions are equivalent:

- U, V are compatible and $\dim(U \cap V) = 1$;
- there are infinitely many k-dimensional subspaces of U which are orthogonal to infinitely many k-dimensional subspaces of V.

Suppose that one of these conditions holds. Then there are infinitely many k-dimensional subspaces of $f'(U)$ which are orthogonal to infinitely many k-dimensional subspaces of $f'(V)$.

The equation $\dim(U \cap V) = 1$ shows that $d(U, V) = k + 1$ and there is a sequence

$$U = U_0, U_1, \ldots, U_k, U_{k+1} = V,$$

where U_j, U_{j+1} are adjacent elements of $\mathcal{G}_{k+2}(H)$ for every $j \in \{0, 1, \ldots, k\}$. By Lemma 2,

$$f'(U_j), f'(U_{j+1}) \in \mathcal{G}_{k+2}(H) \cup \mathcal{G}_{k+1}(H)$$

are t-adjacent or coincident; in particular, if for a certain $j \in \{0, 1, \ldots, k\}$ both $f'(U_j), f'(U_{j+1})$ belong to $\mathcal{G}_{k+1}(H)$, then $f'(U_j) = f'(U_{j+1})$.

Suppose that at least one of $f'(U)$, $f'(V)$, say $f'(V)$, belongs to $\mathcal{G}_{k+1}(H)$. Since there are infinitely many k-dimensional subspaces of $f'(U)$ which are orthogonal to infinitely many k-dimensional subspaces of $f'(V)$, one of the following possibilities is realized:

1. $f'(U) \in \mathcal{G}_{k+2}(H)$ is the orthogonal complement of $f'(V)$;
2. $f'(U), f'(V) \in \mathcal{G}_{k+1}(H)$ are orthogonal.

In the case (1), we take the maximal $j \in \{0, 1, \ldots, k + 1\}$ such that $f'(U_j)$ belongs to $\mathcal{G}_{k+2}(H)$. Since $f'(V) \in \mathcal{G}_{k+1}(H)$ (by assumption), we have $j \leq k$. Also, if $j < k$, then

$$f'(U_{j+1}) = \cdots = f'(U_{k+1}) = f'(V).$$

Therefore, $f'(V) \subset f'(U_j)$. On the other hand, $f'(V)$ is the orthogonal complement of $f'(U)$ and

$$\dim(f'(U) \cap f'(U_j)) = 1.$$

The subspaces U and U_j are connected by the sequence $U = U_0, U_1, \ldots, U_j$ with $j \leq k$ which implies that

$$\dim(f'(U) \cap f'(U_j)) \geq k + 2 - j \geq 2,$$

and we get a contradiction.
The case (2) is similar. We consider minimal \(t \) and maximal \(j \) such that \(f'(U_t) \) and \(f'(U_j) \) belong to \(G_{k+2}(H) \). Since \(f'(U) \) and \(f'(V) \) are elements of \(G_{k+1}(H) \), we have \(t \geq 1 \) and \(j \leq k \). As in the previous case, we have

\[
f'(U) = f'(U_0) = \cdots = f'(U_{t-1}) \quad \text{and} \quad f'(U_{j+1}) = \cdots = f'(U_{k+1}) = f'(V)
\]

if \(t > 1 \) and \(j < k \), respectively. Therefore,

\[
f'(U) \subset f'(U_t) \quad \text{and} \quad f'(V) \subset f'(U_j).
\]

Recall that \(f'(U), f'(V) \) are orthogonal \((k+1)\)-dimensional subspaces. This means that

\[
\dim(f'(U_t) \cap f'(U_j)) = 1 \text{ or } 2.
\]

On the other hand, \(U_t \) and \(U_j \) are connected by a sequence of \(j-t \) elements of \(G_{k+2}(H) \), where any two consecutive elements are adjacent and \(j-t \leq k-1 \); therefore,

\[
\dim(f'(U_t) \cap f'(U_j)) \geq k+2 - (j-t) \geq k+2 - (k-1) = 3
\]

which gives a contradiction again.

So, \(f'(U) \) and \(f'(V) \) both belong to \(G_{k+2}(H) \). Since for every \(U \in G_{k+2}(H) \) there is \(V \in G_{k+2}(H) \) such that \(U, V \) are compatible and \(\dim(U \cap V) = 1 \), the proof is complete. \(\square \)

3.3. The case \(i > 3 \)

In this case, we have \(m \geq i+1 \) by assumption. As in the previous subsection, we show that \(f \) is adjacency preserving.

Suppose that \(X, Y \in G_k(H) \) are adjacent. Then \(\dim(X + Y) = k + 1 \)

\[
\dim(X + Y) \perp = n - (k + 1) = mk + i - k - 1 = (m - 1)k + i - 1.
\]

Without loss of generality, we can assume that \(m = i + 1 \). In the case when \(m - i - 1 > 0 \), we choose mutually orthogonal \(k \)-dimensional subspaces

\[
X_1, \ldots, X_{m-i-1} \subset (X + Y) \perp
\]

(if \(m - i - 1 = 1 \), then we take any \(k \)-dimensional subspace \(X_1 \) orthogonal to \(X + Y \)), consider the subspaces

\[
M = (X_1 + \cdots + X_{m-i-1}) \perp \quad \text{and} \quad N = (f(X_1) + \cdots + f(X_{m-i-1})) \perp
\]

whose dimension is equal to \((i+1)k + i\) and observe that \(f \) sends any \(k \)-dimensional subspace of \(M \) to a \(k \)-dimensional subspace of \(N \).
Let \(m = i + 1 \). Two \(k \)-dimensional subspaces of \(H \) are adjacent if and only if their orthogonal complements are adjacent. In particular, we have
\[
\dim(X^\perp \cap Y^\perp) = n - k - 1 = (i + 1)k + i - k - 1 = ik + i - 1.
\]
Assume that \(f(X) \) and \(f(Y) \) are not adjacent. Then their orthogonal complements are also not adjacent and
\[
\dim(f(X)^\perp \cap f(Y)^\perp) < ik + i - 1.
\]
We set
\[
M_1 = X^\perp \cap Y^\perp \quad \text{and} \quad N_1 = f(X)^\perp \cap f(Y)^\perp.
\]
Then \(f \) sends any \(k \)-dimensional subspace of \(M_1 \) to a \(k \)-dimensional subspace of \(N_1 \), i.e. it induces an orthogonality preserving injection
\[
f_1 : \mathcal{G}_k(M_1) \to \mathcal{G}_k(N_1),
\]
where
\[
\dim N_1 < \dim M_1 = ik + i - 1.
\]
Note that \(f_1 \) is not adjacency preserving (otherwise, it is induced by a unitary or anti-unitary operator which contradicts the fact that \(\dim N_1 < \dim M_1 \)). Let us take any adjacent \(U, V \in \mathcal{G}_k(M_1) \) such that \(f(U), f(V) \) are not adjacent. Consider the subspace
\[
M_2 = U^\perp \cap V^\perp \cap M_1
\]
whose dimension is equal to
\[
\dim M_1 - k - 1 = (i - 1)k + i - 2.
\]
The map \(f \) sends any \(k \)-dimensional subspace of \(M_2 \) to a \(k \)-dimensional subspace contained in
\[
N_2 = f(U)^\perp \cap f(V)^\perp \cap N_1.
\]
Since \(\dim N_1 < \dim M_1 \) and \(f(U), f(V) \) are distinct non-adjacent \(k \)-dimensional subspaces of \(N_1 \), we have \(\dim N_2 < \dim M_2 \). As above, the restriction of \(f \) to \(\mathcal{G}_k(M_2) \) is not adjacency preserving.

Recursively, we establish that \(f \) induces a sequence of maps
\[
f_j : \mathcal{G}_k(M_j) \to \mathcal{G}_k(N_j), \quad j = 1, \ldots, i - 3,
\]
where
\[
\dim N_j < \dim M_j = (i - j + 1)k + i - j
\]
and every \(f_j \) is an orthogonality preserving injection, but it is not adjacency preserving. On the other hand,
\[
\dim M_{i-3} = 4k + 3
\]
and \(f_{j-3} \) can be considered as an orthogonality preserving injection of \(G_k(M_{i-3}) \) to \(G_k(M') \), where \(M' \) is a \((4k + 3)\)-dimensional complex Hilbert space containing \(N_{i-3} \). By the arguments from the previous subsection, \(f_{j-3} \) is adjacency preserving. We come to a contradiction which implies that \(f(X) \) and \(f(Y) \) are adjacent.

Declaration of competing interest

The author declared that he had no conflicts of interest with respect to their authorship or the publication of this article.

Acknowledgement

The author acknowledges the support by the Austrian Science Fund (FWF): project I 4579-N and the Czech Science Foundation (GAČR): project 20-09869L. Also, he is grateful to Hans Havlicek and the anonymous reviewer for useful remarks and corrections.

References